cleded by NT 2/6/17

CETIFICATION

SDG No:

JC33572

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

4 TH Q 2016 Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken December 8, 9 and 12, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the parameters shown in Table 1. The results were reported under SDG No.: JC33572. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. Individual data review worksheets are enclosed for each target analyte group. The data sample summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC33572-1	A-2R2	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides;
JC33572-2	A-1R4	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides; Inorganics; Methane
JC33572-3	FB120816	AQ- Field Blank Water	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-4	S-34	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides; Inorganics; Methane
JC33572-5	S-33	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-6	EB120916	AQ- Equipment Blank	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-7	S-37	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides;
JC33572-8	S-35	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-9	S-35D	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-10	FB120916	AQ- Field Blank Water	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-11	S-36	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-12	S-39D	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-12D	S-39D MSD	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides
JC33572-12S	S-39D MS	Groundwater	VOCs; SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature: Date:

January 25, 2017

Mendez IC 1886

600874

Page 1 of 1

Client Sample ID: A-2R2

Lab Sample ID: JC33572-1

Matrix: Method: AQ - Ground Water

Project:

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Date Received: 12/13/16

Percent Solids: n/a

Ву Prep Date File ID DF Analyzed Prep Batch **Analytical Batch** V4B2775 Run #1 4B67480.D 12/18/16 HTn/a n/a 1

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

RL **MDL** Units Q CAS No. Compound Result

106-99-0 1,3-Butadiene ND 5.0 0.17 ug/i

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

Dibromofluoromethane 76-120% 1868-53-7 103% 1,2-Dichloroethane-D4 114% 73-122% 17060-07-0 2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 103% 78-117%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: A-2R2

Lab Sample ID: JC33572-1

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Q

Date Received: 12/13/16

Percent Solids: n/a

By **Analytical Batch** File ID DF Prep Date Prep Batch Analyzed Run #1 Z117259.D 12/16/16 CS 12/15/16 OP99226 EZ5830 1

Run #2

Initial Volume Final Volume

1000 ml

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	սք/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	սջ/Լ
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.21	ug/1
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/1
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: A-2R2 Lab Sample ID: JC33572-1

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

ABN TCL Special List

ADN 1 CL Special List								
CAS No.	Compound	Result	RL	MDL	Units			
105-60-2	Caprolactam	ND	2.0	0.65	ug/l			
218-01-9	Chrysene	ND	1.0	0.18	ug/l			
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l			
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l			
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l			
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l			
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l			
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l			
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l			
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l			
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l			
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l			
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l			
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l			
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/i			
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/i			
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l			
86-73-7	Fluorene	ND	1.0	0.17	ug/l			
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l			
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l			
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l			
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l			
78-59-1	Isophorone	ND	2.0	0.28	ug/l			
90-12-0	1-Methylnaphthalene	0.38	1.0	0.26	ug/l			
91-57-6	2-Methylnaphthalene	0.38	1.0	0.21	ug/l			
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l			
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l			
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l			
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l			
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l			
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l			
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l			
129-00-0	Pyrene	ND	1.0	0.22	ug/l			
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its			
367-12-4	2-Fluorophenol	30%		14-8	8%			

22%

MDL = Method Detection Limit ND = Not detected

Phenol-d5

RL = Reporting Limit

4165-62-2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

10-110%

B = Indicates analyte found in associated method blank

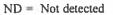
N = Indicates presumptive evidence of a compound

j J Client Sample ID: A-2R2 Lab Sample ID: JC33572-1

Matrix: AQ - Ground Water Method:

Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR


Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	86%		39-149%
4165-60-0	Nitrobenzene-d5	77%		32-128%
321-60-8	2-Fluorobiphenyl	79%		35-119%
1718-51-0	Terphenyl-d14	81%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: A-2R2

Lab Sample ID: JC33572-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Q

Date Received: 12/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	4P20230.D	1	12/16/16	AD	12/15/16	OP99226A	E4P1099

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.050	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.050	0.033	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.043	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/i
218-01-9	Chrysene	ND	0.10	0.026	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.036	l/gu
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l
91-20-3	Naphthalene	0.106	0.10	0.029	ug/l
123-91-1	1,4-Dioxane	0.516	0.10	0.049	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-60-0	Nitrobenzene-d5	85%		24-12	5%
321-60-8	2-Fluorobiphenyl	58%		19-12	7%
1718-51-0	Terphenyl-d14	78%	10-119%		

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Date Received: 12/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107802.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	91%		56-1	45%	
111-27-3	Hexanol	93%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: A-2R2 Lab Sample ID:

JC33572-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Q

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch KD 12/15/16 OP99257 G1G4173 Run #1 1G130588.D 1 12/16/16

Run #2

Run #1

Run #2

Initial Volume

Final Volume

930 ml

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0065	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0065	ug/l
319-85-7	beta-BHC	ND	0.011	0.0061	ug/l
319-86-8	delta-BHC	ND	0.011	0.0049	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0030	ug/l
5103-71-9	alpha-Chlordane	ND	0.011	0.0050	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0049	ug/l
60-57-1	Dieldrin	ND	0.011	0.0039	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0041	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0066	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0053	ug/l
72-20-8	Endrin	ND	0.011	0.0054	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0056	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0055	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0055	ug/l
959-98-8	Endosulfan-I	ND	0.011	0.0053	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0046	ug/l
76-44-8	Heptachlor	ND	0.011	0.0041	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0070	ug/l
72-43-5	Methoxychlor	ND	0.022	0.0061	ug/l
8001-35-2	Toxaphene	ND	0.27	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its

Surrogate Recoveries CAS No. Kun# 1 877-09-8 Tetrachloro-m-xylene 75% 26-132% 531% a 877-09-8 Tetrachloro-m-xylene 26-132% 2051-24-3 Decachlorobiphenyl 65% 10-118% 2051-24-3 Decachlorobiphenyl 73% 10-118%

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-1R4 Lab Sample ID: JC33572-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Prep Date File ID **Prep Batch Analytical Batch** DF Analyzed By 4B67481.D V4B2775 12/18/16 Run #1 1 HT n/a n/a

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

RL **MDL** Units Q CAS No. Compound Result 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 103% 76-120% 1,2-Dichloroethane-D4 112% 73-122% 17060-07-0 Toluene-D8 84-119% 2037-26-5 98% 460-00-4 4-Bromofluorobenzene 100% 78-117%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

CS

Prep Date

12/15/16

Page 1 of 3

Client Sample ID: A-1R4

Lab Sample ID: JC33572-2

File ID

Z117260.D

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

DF

1

Date Sampled: 12/08/16

Date Received: 12/13/16

EZ5830

Percent Solids: n/a

OP99226

Q

Project:

BMSMC, Building 5 Area, PR

Analyzed

12/16/16

Prep Batch **Analytical Batch**

Run #1 Run #2

Initial Volume

900 ml

Final Volume 1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	-11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l
	3&4-Methylphenol	ND	2.2	0.98	ug/l
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.44	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	սք/Լ
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	33.1	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	7.5	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: A-1R4 Lab Sample ID: JC33572-2

Matrix: AQ - Ground Water
Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Date Received: 12/13/16

Percent Solids: n/a

Q

Report of Analysis

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.2	0.72	ug/l
218-01-9	Chrysene	ND	1.1	0.20	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l
123-91-1	1,4-Dioxane	37.3	1.1	0.73	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l
86-73-7	Fluorene	ND	1.1	0.19	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l
78-59-1	Isophorone	ND	2.2	0.31	ug/i
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l
91-57-6	2-Methylnaphthalene	0.55	1.1	0.23	ug/l
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l
129-00-0	Pyrene	ND	1.1	0.24	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l

Run#1

33%

Run# 2

J

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

CAS No.

367-12-4

E = Indicates value exceeds calibration range

2-Fluorophenol

Surrogate Recoveries

J = Indicates an estimated value

Limits

14-88%

B = Indicates analyte found in associated method blank

Client Sample ID: A-1R4

Lab Sample ID: JC33572-2

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Received: 12/13/16

Date Sampled: 12/08/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	24%		10-110%
118-79-6	2,4,6-Tribromophenol	95%		39-149%
4165-60-0	Nitrobenzene-d5	89%		32-128%
321-60-8	2-Fluorobiphenyl	96%		35-119%
1718-51-0	Terphenyl-d14	86%		10-126%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: A-1R4 Lab Sample ID: JC33572-2

Matrix: Method:

SGS Accutest

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4P20231.D	1	12/16/16	AD	12/15/16	OP99226A	E4P1099

Run #2

Project:

Final Volume Initial Volume Run #1 900 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.056	0.025	ug/l
50-32-8	Benzo(a)pyrene	ND	0.056	0.037	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.048	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.037	ug/l
218-01-9	Chrysene	ND	0.11	0.029	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.040	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.042	ug/l
91-20-3	Naphthalene	0.423	0.11	0.033	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
4165-60-0	Nitrobenzene-d5	96%		24-12	25%
321-60-8	2-Fluorobiphenyl	60%		19-12	7%
1718-51-0	Terphenyl-d14	82%		10-11	9%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: A-1R4 Lab Sample ID: JC33572-2

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

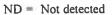
Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Date Received: 12/13/16

Q


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107803.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	103%		56-1	45%
111-27-3	Hexanol	94%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-1R4

Lab Sample ID: JC33572-2

Matrix:

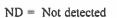
AQ - Ground Water

Method: Project:

RSK-175

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16


Date Received: 12/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA56413.D	200	12/16/16	LM	n/a	n/a	GAA1095
Run #2							

RL MDL Units Q CAS No. Compound Result 74-82-8 Methane 10700 22 7.1 ug/l.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-1R4 Lab Sample ID: JC33572-2

Matrix: Method:

AQ - Ground Water

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

Analytical Batch File ID DF Analyzed By **Prep Date** Prep Batch 1G130589.D 12/16/16 KD 12/15/16 OP99257 G1G4173 Run #1 1

Run #2

Project:

Final Volume Initial Volume

Run #1 900 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0067	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0067	ug/l
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l
319-86-8	delta-BHC	ND	0.011	0.0051	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/l
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0051	ug/l
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0055	ug/l
72-20-8	Endrin	ND	0.011	0.0056	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0057	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0056	ug/l
959-98-8	Endosulfan-I	ND	0.011	0.0055	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0048	ug/l
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l
1024-57-3	Heptachlor epoxide	ND	110.0	0.0073	ug/l
72-43-5	Methoxychlor	ND	0.022	0.0063	ug/l
8001-35-2	Toxaphene	ND	0.28	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	120%		26-13	32%
877-09-8	Tetrachloro-m-xylene	91%		26-13	32%
2051-24-3	Decachlorobiphenyl	42%		10-11	8%
2051-24-3	Decachlorobiphenyl	38%		10-11	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: A-1R4 Lab Sample ID:

JC33572-2

AQ - Ground Water

Date Sampled: 12/08/16

Matrix:

Date Received: 12/13/16 Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	12400 598	100 15	12 0.39	ug/l ug/l				SW846 6010C ¹ SW846 6010C ¹	

(1) Instrument QC Batch: MA40993

(2) Prep QC Batch: MP97679

Client Sample ID: A-1R4 Lab Sample ID: JC33572-2

Matrix: AQ - Ground Water Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	546	5.0	mg/l	1	12/20/16	JA	SM2320 B-11
Iron, Ferric a	11.4	0.30	mg/l	1	12/19/16 20:50	HS	SM3500FE B-11
Iron, Ferrous b	0.99	0.20	mg/l	1	12/19/16 20:50	HS	SM3500FE B-11
Nitrogen, Nitrate c	0.21	0.11	mg/i	1	12/21/16 14:18	YZ	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.21	0.10	mg/l	1	12/21/16 14:18	YZ	EPA 353 2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/13/16 22:34	AT	SM4500NO2 B-11
Sulfate	< 10	10	mg/l	1	12/23/16 04:27	TG	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	12/14/16 22:04	СВ	SM4500S2- F-11

Report of Analysis

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.

(d) Sample received outside the holding time.

By

HT

Page I of I

Client Sample ID: FB120816 Lab Sample ID: JC33572-3

File ID

4B67479.D

Matrix:

AQ - Field Blank Water

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, PR

DF

1

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch

Prep Date Prep Batch n/a n/a V4B2775

Run #1 Run #2

Purge Volume

Compound

Run #1 5.0 ml

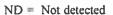
Run #2

CAS No.

RL**MDL** Q Result Units

5.0 106-99-0 1,3-Butadiene ND 0.17 ug/l

Analyzed


12/18/16

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

1868-53-7 Dibromofluoromethane 103% 76-120% 17060-07-0 1,2-Dichloroethane-D4 112% 73-122% 84-119% 2037-26-5 Toluene-D8 99%

4-Bromofluorobenzene 78-117% 460-00-4 112%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: FB120816

Lab Sample ID: JC33572-3 AQ - Field Blank Water Matrix: SW846 8270D SW846 3510C Method:

BMSMC, Building 5 Area, PR Project:

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

Prep Batch Analytical Batch By Prep Date File ID DF Analyzed CS 12/15/16 OP99226 EZ5830 12/16/16 Run #1 Z117261.D 1

Run #2

Final Volume **Initial Volume**

1.0 ml

Run #1 980 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	սք/1
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l
	3&4-Methylphenol	ND	2.0	0.90	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4. i	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenoi	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	սջ/1
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.0	0.46	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Buty! benzyl phthalate	ND	2.0	0.47	ug/l
92-52-4	1,1'-Biphenyi	ND	1.0	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5. I	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 12/08/16

Client Sample ID: FB120816 Lab Sample ID: JC33572-3

Matrix: AQ - Field Blank Water Method: SW846 8270D SW846 3510C

Date Received: 12/13/16 Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
53-70-3	Dibenzo(a, h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	m o
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	1
129-00-0	Pyrene	ND	1.0	0.22	ug/l	13
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	181
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	10
367-12-4	2-Fluorophenol	37%		14-88		
4165-62-2	Phenol-d5	25%		10-11	10%	

MDL = Method Detection Limit J = Indicates an estimated value

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

fael Infanto Méndez

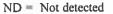
N = Indicates presumptive evidence of a compound

ND = Not detected

RL = Reporting Limit

Client Sample ID: FB120816 Lab Sample ID: JC33572-3

Matrix: AQ - Field Blank Water


Method: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Project:

Date Sampled: 12/08/16 Date Received: 12/13/16 Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	80%		39-149%
4165-60-0	Nitrobenzene-d5	81%		32-128%
321-60-8	2-Fluorobiphenyl	78%		35-119%
1718-51-0	Terphenyl-d14	90%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AD

Prep Date

12/15/16

Page 1 of 1

Client Sample ID: FB120816 Lab Sample ID: JC33572-3

Matrix:

File ID

4P20232.D

Method: Project:

AQ - Field Blank Water SW846 8270D BY SIM SW846 3510C

DF

1

BMSMC, Building 5 Area, PR

Analyzed

12/16/16

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

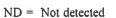
OP99226A

Q

Prep Batch Analytical Batch

E4P1099

Run #1 Run #2


Final Volume Initial Volume Run #1 980 ml 1.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units 56-55-3 Benzo(a)anthracene ND 0.051 0.023 ug/l 50-32-8 Benzo(a)pyrene ND 0.051 0.034 ug/l 205-99-2 Benzo(b)fluoranthene ND 0.10 0.044ug/l 207-08-9 Benzo(k)fluoranthene 0.034 ND 0.10 ug/l Chrysene 0.027 218-01-9 ND 0.10 ug/l Dibenzo(a,h)anthracene 0.037 53-70-3 ND 0.10 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 0.10 0.039 ug/l 91-20-3 Naphthalene ND 0.10 0.030 ug/l 123-91-1 1,4-Dioxane ND 0.10 0.050 ug/1

CAS No.	Surrogate Recoveries	Kun# I	Kun# Z	Limits
4165-60-0	Nitrobenzene-d5	88%		24-125%
321-60-8	2-Fluorobiphenyl	53%		19-127%
1718-51-0	Terphenyl-d14	85%		10-119%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: FB120816 Lab Sample ID: JC33572-3

Matrix: AQ - Field Blank Water Method: SW846-8015C (DAI)

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 **Date Received:** 12/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107804.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	98%		56-1	45%
111-27-3	Hexanol	93%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: FB120816

Lab Sample ID: JC33572-3

Matrix: AQ - Field Blank Water Method: SW846 8081B SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed Ву **Prep Date** Prep Batch KD 12/15/16 OP99257 G1G4173 Run #1 1G130590.D 1 12/16/16

Run #2

Initial Volume Final Volume

Run #1 900 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.011	0.0067	ug/l	
319-84-6	alpha-BHC	ND	0.011	0.0067	ug/l	
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l	
319-86-8	delta-BHC	ND	0.011	0.0051	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/l	
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/l	
5103-74-2	gamma-Chlordane	ND	0.011	0.0051	ug/l	
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l	
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l	
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l	
50-29-3	4,4'-DDT	ND	0.011	0.0055	ug/l	
72-20-8	Endrin	ND	0.011	0.0056	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/l	
7421-93-4	Endrin aldehyde	ND	0.011	0.0057	ug/l	
53494-70-5	Endrin ketone	ND	0.011	0.0056	ug/l	
959-98-8	Endosulfan-I	ND	0.011	0.0055	ug/l	
33213-65-9	Endosulfan-II	ND	0.011	0.0048	ug/l	
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.011	0.0073	ug/l	
72-43-5	Methoxychlor	ND	0.022	0.0063	ug/l	
8001-35-2	Toxaphene	ND	0.28	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	78%		26-13	32%	
877-09-8	Tetrachloro-m-xylene	77%		26-13	32%	
2051-24-3	Decachlorobiphenyl	39%		10-1	18%	
2051-24-3	Decachlorobiphenyl	39%		10-1	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

HT

Page 1 of 1

Client Sample ID: S-34

JC33572-4

Date Sampled: 12/08/16

V4B2779

Lab Sample ID: Matrix:

AQ - Ground Water

DF

Ī

Date Received:

12/13/16

Method:

SW846 8260C

Project:

Percent Solids: n/a

BMSMC, Building 5 Area, PR

Prep Batch n/a

Analytical Batch

Run #1 Run #2

File ID

4B67595.D

Purge Volume Run #1 5.0 ml

Run #2

Result

MDL

Units

Q

106-99-0

CAS No.

1,3-Butadiene

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Compound

ND

Analyzed

12/21/16

5.0

0.17 ug/l

Prep Date

n/a

CAS No.

Run#1

Run# 2

Limits

1868-53-7

17060-07-0

2037-26-5 460-00-4

Surrogate Recoveries Dibromofluoromethane

Toluene-D8

101% 106%

RL

97% 112% 73-122% 84-119% 78-117%

76-120%

Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-34

Lab Sample ID: JC33572-4

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

Analytical Batch File ID By Prep Batch DF Analyzed Prep Date EZ5830 CS OP99226 Z117262.D 12/16/16 12/15/16 Run #1 I

Run #2

Final Volume **Initial Volume**

Run #1 980 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l
	3&4-Methylphenol	ND	2.0	0.90	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/i
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.0	0.46	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	սք/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-34

Lab Sample ID: JC33572-4

Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.66	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	սջ/Լ
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chioroisopropyl)ether	ND	2.0	0.41	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	սջ/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l
123-91-1	1,4-Dioxane	13.5	1.0	0.67	ug/l
53-70-3	Dibenzo(a, h)anthracene	ND	1.0	0.34	ug/l
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l

CAS No. Run#1 Run# 2 Limits Surrogate Recoveries

367-12-4 35% 14-88% 2-Fluorophenol

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-34

Lab Sample ID: JC33572-4

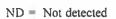
Matrix:

AQ - Ground Water

Method: Project:

BMSMC, Building 5 Area, PR

SW846 8270D SW846 3510C


Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165 60 0	DI 1.15	050/		10.1100/
4165-62-2	Phenol-d5	25%		10-110%
118-79-6	2,4,6-Tribromophenol	80%		39-149%
4165-60-0	Nitrobenzene-d5	75%		32-128%
321-60-8	2-Fluorobiphenyl	75%		35-119%
1718-51-0	Terphenyl-d14	72%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-34

Lab Sample ID: JC33572-4

Matrix:

AQ - Ground Water

Method:

SW846 8270D BY SIM SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Q

Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By 4P20233.D 12/16/16 AD 12/15/16 OP99226A E4P1099 Run #1 1

Run #2

Final Volume Initial Volume

Run #1 980 ml

1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.051	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.051	0.034	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.044	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.034	ug/l
218-01-9	Chrysene	ND	0.10	0.027	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.037	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.039	ug/l
91-20-3	Naphthalene	ND	0.10	0.030	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
4165-60-0	Nitrobenzene-d5	85%		24-13	25%
321-60-8	2-Fluorobiphenyl	55%		19-12	27%
1718-51-0	Terphenyl-d14	68%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Page 1 of 1

Client Sample ID: S-34

Lab Sample ID: JC33572-4

File ID

GH107805.D

Matrix:

AQ - Ground Water

Method:

SW846-8015C (DAI)

DF

1

Project:

BMSMC, Building 5 Area, PR

Analyzed

12/16/16

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Prep Batch

n/a

Prep Date

n/a

Analytical Batch GGH5590

Run #1 Run #2

Low Molecular Alcohol List

CAS No.	Compound	Kesult	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	100%		56-1	45%
111-27-3	Hexanol	93%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-34

Lab Sample ID: JC33572-4

Matrix:

AQ - Ground Water

Method: Project:

RSK-175

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

File ID Prep Batch **Analytical Batch** DF Analyzed By **Prep Date** AA56415.D 10 12/16/16 LM GAA1095 Run #1 n/a n/a

Run #2

MDL CAS No. Compound Result RLUnits Q

74-82-8

Methane

874

1.1

0.36 ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: S-34

JC33572-4 Lab Sample ID:

Matrix:

AQ - Ground Water

Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

Prep Batch Analytical Batch File ID DF Analyzed By **Prep Date** 1G130591.D 12/16/16 KD 12/15/16 OP99257 G1G4173 Run #1 1

Run #2

Initial Volume Final Volume

Run #1 940 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0064	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0064	ug/l
319-85-7	beta-BHC	ND	0.011	0.0061	ug/l
319-86-8	delta-BHC	ND	0.011	0.0049	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0030	ug/i
5103-71-9	alpha-Chlordane	ND	0.011	0.0049	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0049	ug/l
60-57-1	Dieldrin	ND	0.011	0.0038	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0040	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0066	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0053	ug/l
72-20-8	Endrin	ND	0.011	0.0054	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0056	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0055	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0054	ug/l
959-98-8	Endosulfan-l	ND	0.011	0.0053	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0046	ug/l
76-44-8	Heptachlor	ND	0.011	0.0041	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0069	ug/l
72-43-5	Methoxychlor	ND	0.021	0.0060	ug/l
8001-35-2	Toxaphene	ND	0.27	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachioro-m-xylene	84%		26-13	32%
877-09-8	Tetrachioro-m-xylene	73%		26-13	32%
2051-24-3	Decachlorobiphenyl	52%		10-1	18%
2051-24-3	Decachlorobiphenyl	60%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix: AQ - Ground Water Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	5550 490	100 15		ug/l ug/l				SW846 6010C ¹ SW846 6010C ¹	

(1) Instrument QC Batch: MA40993 (2) Prep QC Batch: MP97679

Client Sample ID: S-34

Lab Sample ID: JC33572-4

Matrix:

AQ - Ground Water

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	380	5.0	mg/l	1	12/20/16	JA	SM2320 B-11
Iron, Ferric a	5.4	0.30	mg/l	1	12/19/16 20:50	HS	SM3500FE B-11
Iron, Ferrous ^b	< 0.20	0.20	mg/l	1	12/19/16 20:50	HS	SM3500FE B-11
Nitrogen, Nitrate c	< 0.11	0.11	mg/l	1	12/21/16 14:19	YZ	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/21/16 14:19	YZ	EPA 353 2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/13/16 22:37	AT	SM4500NO2 B-11
Sulfate	< 10	10	mg/l	1	12/23/16 04:51	TG	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	12/14/16 22:04	CB	SM4500S2- F-11

Report of Analysis

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.

(d) Sample received outside the holding time.

Report of Analysis

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID: JC33572-5

Matrix: Method: Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4B67594.D	1	12/21/16	HT	n/a	n/a	V4B2779

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
106-99-0	1,3-Butadiene	ND	5.0	0.17	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
1868-53-7	Dibromofluoromethane	100%		76-1	20%
17060-07-0	1,2-Dichloroethane-D4	101%	73-122%		22%
2037-26-5	Toluene-D8	96%		84-1	19%
460-00-4	4-Bromofluorobenzene	108%		78-1	17%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: S-33

Lab Sample ID: JC33572-5

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16

Date Received: 12/13/16

Percent Solids: n/a

Q

Analytical Batch File ID Prep Date Prep Batch DF Analyzed By OP99226 EZ5830 12/16/16 CS 12/15/16 Run #1 Z117263.D 1

Run #2

Final Volume **Initial Volume**

Run #1 1000 ml

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/i
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	1.2	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JC33572-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.65	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l
123-91-1	1,4-Dioxane	18.8	1.0	0.66	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/I
131-11-3	Dimethyl phthalate	ND	2,0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

ND = Not detected MDL = Method Detection Limit

33%

RL = Reporting Limit E = Indicates value exceeds calibration range

2-Fluorophenol

367-12-4

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

fael Infante Méndez

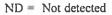
Client Sample ID: S-33

Lab Sample ID: JC33572-5

Matrix:

AQ - Ground Water

Method: Project:


SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	23%		10-110%
118-79-6	2,4,6-Tribromophenol	77%		39-149%
4165-60-0	Nitrobenzene-d5	63%		32-128%
321-60-8	2-Fluorobiphenyl	72%		35-119%
1718-51-0	Terphenyl-d14	69%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID: JC33572-5

Matrix:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Percent Solids: n/a

Q

File ID DF By **Prep Date** Prep Batch **Analytical Batch** Analyzed Run #1 4P20234.D 1 12/16/16 AD 12/15/16 OP99226A E4P1099

Run #2

Initial Volume Final Volume

1000 ml Run #1

Run #2

1.0 ml

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.050	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.050	0.033	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.043	սք/1
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/l
218-01-9	Chrysene	ND	0.10	0.026	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.036	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l
91-20-3	Naphthalene	ND	0.10	0.029	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
4165-60-0	Nitrobenzene-d5	75%		24-12	.5%
321-60-8	2-Fluorobiphenyl	51%		19-12	.7%
1718-51-0	Terphenyl-d14	65%		10-11	9%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID: JC33572-5

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/16 Date Received: 12/13/16

Q

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch GH107806.D 12/16/16 XPL GGH5590 Run #1 1 n/a n/a

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	106%		56-1	45%
111-27-3	Hexanol	99%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID: JC33572-5

Matrix: Method: AQ - Ground Water

SW846 8081B SW846 3510C

Date Sampled: 12/08/16

Date Received: 12/13/16

Percent Solids: n/a

Q

BMSMC, Building 5 Area, PR Project:

Ву **Analytical Batch** File ID DF **Prep Date** Prep Batch Analyzed KD OP99257 G1G4173 1G130592.D 12/16/16 12/15/16 Run #1 1

Run #2

Final Volume Initial Volume

Run #1 990 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/i
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts
877-09-8	Tetrachloro-m-xylene	75%		26-13	32%
877-09-8	Tetrachloro-m-xylene	57%		26-13	32%
2051-24-3	Decachlorobiphenyl	39%		10-1	18%
2051-24-3	Decachlorobiphenyl	37%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: EB120916 Lab Sample ID: JC33572-6

Matrix:

AQ - Equipment Blank

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

By **Analytical Batch** File ID DF **Prep Date** Prep Batch Analyzed 4B67586.D 12/21/16 V4B2779 Run #1 i HT n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units Q 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

Dibromofluoromethane 101% 76-120% 1868-53-7 1,2-Dichloroethane-D4 73-122% 17060-07-0 108% 84-119% 2037-26-5 Toluene-D8 96% 460-00-4 4-Bromofluorobenzene 110% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: EB120916 Lab Sample ID: JC33572-6

Matrix: AQ - Equipment Blank Method: SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR Project:

Date Sampled: 12/09/16 Date Received: 12/13/16 Percent Solids: n/a

Q

 $\mathbf{B}\mathbf{y}$ **Analytical Batch** File ID DF **Prep Date** Prep Batch Analyzed RL OP99259 EF6882 Run #1 F163380.D 1 12/19/16 12/16/16 Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	u <u>r</u> /l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l
	3&4-Methylphenol	ND	2.1	0.93	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.41	ug/i
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.47	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l
92-52-4	1, I'-Biphenyl	ND	1.1	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB120916

Lab Sample ID: JC33572-6

Matrix: Method: AQ - Equipment Blank

SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

Q

J

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	1.7	2.1	0.68	ug/l
218-01-9	Chrysene	ND	1.1	0.19	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.58	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.50	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l
86-73-7	Fluorene	ND	1.1	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.34	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/l
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l
85-01-8	Phenanthrene	ND	1.1	0.18	ug/l
129-00-0	Pyrene	ND	1.1	0.23	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	45%		14-8	8%
4165-62-2	Phenol-d5	29%		10-1	10%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value B = Indicates analyte found in associated method blank

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: EB120916 Lab Sample ID:

JC33572-6

Matrix:

Method:

Project:

AQ - Equipment Blank

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	86%		39-149%
4165-60-0	Nitrobenzene-d5	80%		32-128%
321-60-8	2-Fluorobiphenyl	80%		35-119%
1718-51-0	Terphenyl-d14	99%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: EB120916

Lab Sample ID: JC33572-6

Matrix: Method: AQ - Equipment Blank

SW846 8270D BY SIM SW846 3510C

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

Q

Project: BMSMC, Building 5 Area, PR

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 3P57306.D 12/16/16 12/16/16 OP99259A E3P2658 1 ΑD

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.053	0.024	a/1
					ug/l
50-32-8	Benzo(a)pyrene	ND	0.053	0.035	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.046	иg/1
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.035	ug/l
218-01-9	Chrysene	ND	0.11	0.027	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.038	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l
91-20-3	Naphthalene	ND	0.11	0.031	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.051	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	62%		24-1	25%
321-60-8	2-Fluorobiphenyl	56%		19-1	27%
1718-51-0	Terphenyl-d14	66%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

By

XPL

n/a

Page 1 of 1

Client Sample ID: EB120916

JC33572-6 Lab Sample ID:

File ID

GH107807.D

Matrix: Method:

Project:

AQ - Equipment Blank

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

n/a

Date Received: 12/13/16

GGH5590

Percent Solids: n/a

Prep Date Prep Batch Analytical Batch

Run #1 Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	103%		56-1	45%	
111-27-3	Hexanol	105%		56-1	45%	

Analyzed

12/16/16

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: EB120916

Lab Sample ID: JC33572-6

Matrix: AQ - Equipment Blank Method: SW846 8081B SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

Q

File ID **Analytical Batch** DF Analyzed Ву Prep Date Prep Batch Run #1 1G130593.D KD 12/15/16 OP99257 G1G4173 1 12/16/16

Run #2

Initial Volume Final Volume Run #1 920 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0066	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0065	ug/l
319-85-7	beta-BHC	ND	0.011	0.0062	ug/!
319-86-8	delta-BHC	ND	0.011	0.0050	սջ/I
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0030	ug/l
5103-71-9	alpha-Chlordane	ND	0.011	0.0050	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0050	ug/l
60-57-1	Dieldrin	ND	0.011	0.0039	ug/l
72-54-8	4,4*-DDD	ND	0.011	0.0041	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0067	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0054	ug/l
72-20-8	Endrin	ND	0.011	0.0055	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0057	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0056	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0055	ug/l
959-98-8	Endosulfan-I	ND	0.011	0.0054	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0047	ug/l
76-44-8	Heptachlor	ND	0.011	0.0041	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0071	ug/l
72-43-5	Methoxychlor	ND	0.022	0.0062	ug/l
8001-35-2	Toxaphene	ND	0.27	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	92%		26-13	32%
877-09-8	Tetrachloro-m-xylene	91%		26-13	32%
2051-24-3	Decachlorobiphenyl	19%		10-13	18%
2051-24-3	Decachlorobiphenyl	19%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID: JC33572-7

Matrix:

AQ - Ground Water

Method:

SW846 8260C

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Date File ID DF By Prep Batch **Analytical Batch** Analyzed Run #1 4B67593.D 12/21/16 HT V4B2779 1 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

RL **MDL** CAS No. Compound Result Units 0

106-99-0 ND 1,3-Butadiene 5.0 0.17 ug/I

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

Dibromofluoromethane 100% 1868-53-7 76-120% 1,2-Dichloroethane-D4 17060-07-0 107% 73-122% 2037-26-5 Toluene-D8 97% 84-119%

460-00-4 4-Bromofluorobenzene 112% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

RL

12/16/16

Page 1 of 3

Client Sample ID: S-37

Lab Sample ID: JC33572-7

File ID

F163381.D

Matrix: Method: AQ - Ground Water

DF

1.0 ml

1

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Analyzed

12/19/16

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

OP99259

Q

Analytical Batch Prep Date Prep Batch

EF6882

Run #1 Run #2

> Final Volume Initial Volume

Run #1 1000 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	սջ/I
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-37 Lab Sample ID: JC33572-7

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Report of Analysis

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	սջ/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	սջ/1	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	19.9	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	1
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	/1-
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	7-2
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	(-
129-00-0	Pyrene	ND	1.0	0.22	ug/l	100
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# I	Run# 2	Lim	its	·

ND = Not detected

367-12-4

MDL = Method Detection Limit

47%

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Méndez I(# 188 Client Sample ID: S-37

Lab Sample ID: JC33572-7

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	29%		10-110%
118-79-6	2,4,6-Tribromophenol	89%		39-149%
4165-60-0	Nitrobenzene-d5	79%		32-128%
321-60-8	2-Fluorobiphenyl	78%		35-119%
1718-51-0	Terphenyl-d14	67%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID:

JC33572-7

Matrix: Method: Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Q

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed Ву **Prep Date Prep Batch** E3P2658 Run #1 3P57307.D 1 12/16/16 ΑD 12/16/16 OP99259A Run #2

	Initial Volume	Final Volume
Run #1	1000 ml	1.0 ml
ln 1/0		

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.050	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.050	0.033	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.043	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/l
218-01-9	Chrysene	ND	0.10	0.026	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.036	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l
91-20-3	Naphthalene	ND	0.10	0.029	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	61% 55%		24-1	25% 27%
1718-51-0	Terphenyl-d14	48%			19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID: JC33572-7

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

Run #1	File ID GH107808.D	DF	Analyzed 12/16/16	By XPL	Prep Date	Prep Batch	Analytical Batch GGH5590
Run #2	G11107606.D	'	12/10/10	XI L	wa	wa	GG115570

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	109%		56-1	45%	
111-27-3	Hexanol	93%		56-1	45%	-

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID: JC33572-7

Matrix:

AQ - Ground Water

Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Q

Date Received: 12/13/16

Percent Solids: n/a

File ID **Prep Date** Prep Batch **Analytical Batch** DF Analyzed By OP99257 G1G4173 Run #1 1G130594.D 12/16/16 KD 12/15/16 Run #2

Initial Volume Run #1 990 ml

Run #2

Final Volume 10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Unit
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
877-09-8	Tetrachloro-m-xylene	81%		26-13	32%
877-09-8	Tetrachloro-m-xylene	74%		26-13	32%
2051-24-3	Decachlorobiphenyl	91%		10-1	18%
2051-24-3	Decachlorobiphenyl	94%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-35

Lab Sample ID: JC33572-8

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4B67592.D	1	12/21/16	HT	n/a	n/a	V4B2779
Run #2							

Purge Volume

5.0 ml Run #1

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q

106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		76-120%
17060-07-0	1,2-Dichloroethane-D4	107%		73-122%
2037-26-5	Toluene-D8	97%		84-119%
460-00-4	4-Bromofluorobenzene	112%		78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: S-35

Lab Sample ID: JC33572-8

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Q

Date Received: 12/13/16

Percent Solids: n/a

File ID

Run #1 F163382.D DF Analyzed 1 12/19/16

By RL

Prep Date **Prep Batch** OP99259 12/16/16

Analytical Batch

EF6882

Run #2

Initial Volume 950 ml

Final Volume

Run #1 Run #2

1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l
	3&4-Methylphenol	ND	2.1	0.93	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.41	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.47	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

toel Infant Méndez IC # 188

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-35

Lab Sample ID: JC33572-8

Matrix:

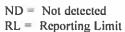
Project:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Report of Analysis


BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MI	DL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.6	8	ug/l	
218-01-9	Chrysene	ND	1.1	0.1	9	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.2	9	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.2	6	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.4	2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.3	9	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.5	8	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.5	0	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.5	3	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.3	5	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.2	3	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.5	2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.2	5	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.2	8	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.2	3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7		ug/l	
206-44-0	Fluoranthene	ND	1.1	0.1	8	ug/l	
86-73-7	Fluorene	ND	1.1	0.1	8	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.3	4	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.5	2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9		ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.4	1	ug/i	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.3	5	ug/l	
78-59-1	Isophorone	ND	2.1	0.2	9	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.2	8	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.2	2	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	0.2	9	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	0.4	1	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	0.4	6	ug/l	Marga V
98-95-3	Nitrobenzene	ND	2.1	0.6	8	ug/l	300
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.5	1	ug/l	fuel Infante
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.2	3	ug/l	Méndez
85-01-8	Phenanthrene	ND	1.1	0.1	8	ug/l	IC # 1888
129-00-0	Pyrene	ND	1.1	0.2	3	ug/l	3000
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.3	9	ug/l	
						_	COLICENCI
CAS No.	Surrogate Recoveries	Run# 1	Run# 2		Limit	S	FIGURE
367-12-4	2-Fluorophenol	46%			14-88	%	
4165-62-2	Phenol-d5	27%			10-11		

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-35

Lab Sample ID: JC33572-8

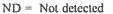
Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR


Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	88%		39-149%
4165-60-0	Nitrobenzene-d5	77%		32-128%
321-60-8	2-Fluorobiphenyl	76%		35-119%
1718-51-0	Terphenyl-d14	69%		10-126%

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: S-35

Method:

Run #2

JC33572-8

Lab Sample ID: Matrix:

AQ - Ground Water SW846 8270D BY SIM SW846 3510C

5

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

F163538.D

	File ID	DF	Analyzed	By	Prep D
Run #1	3P57308.D	1	12/16/16	AD	12/16/1

12/22/16

Ву	Prep Date	Prep Batch	Analytical Batch
AD	12/16/16	OP99259A	E3P2658
AD	12/16/16	OP99259A	EF6888

Q

	Initial Volume	Final Volume
Run #1	950 ml	1.0 ml
Run #2	950 ml	1.0 ml

CAS No.	Compound	Result	RL	MDL	Units	
56-55-3	Benzo(a)anthracene	ND	0.053	0.024	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.053	0.035	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.046	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.035	ug/l	
218-01-9	Chrysene	ND	0.11	0.027	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.038	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l	
91-20-3	Naphthalene	ND	0.11	0.031	ug/l	
123-91-1	1,4-Dioxane	110 a	0.53	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	Limits	
4165-60-0	Nitrobenzene-d5	61%	68%	24-1	25%	
321-60-8	2-Fluorobiphenyl	55%	67%	19-1	27%	
1718-51-0	Terphenyl-d14	52%	65%	10-1	19%	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: S-35

JC33572-8 Lab Sample ID:

File ID

GH107811.D

Matrix:

AQ - Ground Water

Method:

SW846-8015C (DAI)

DF

Project:

Run #1

Run #2

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

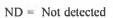
n/a

Date Received: 12/13/16

Percent Solids: n/a

Prep Batch

Analytical Batch GGH5590


Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	112%		56-1	45%	
111-27-3	Hexanol	96%		56-1	45%	
						7

Analyzed

12/16/16

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: S-35 Lab Sample ID: JC33572-8

Matrix:

AQ - Ground Water

SW846 8081B SW846 3510C Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By **Prep Date** Prep Batch 12/15/16 OP99257 G1G4173 Run #1 1G130595.D 12/16/16 KD 1

Run #2

Initial Volume Final Volume 10.0 ml 910 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	
309-00-2	Aldrin	ND	0.011	0.0066	ug/l	
319-84-6	alpha-BHC	ND	0.011	0.0066	ug/l	
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l	
319-86-8	delta-BHC	ND	0.011	0.0050	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/l	
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/l	
5103-74-2	gamma-Chlordane	ND	0.011	0.0050	ug/l	
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l	
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l	
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l	
50-29-3	4,4'-DDT	ND	0.011	0.0054	ug/l	
72-20-8	Endrin	ND	0.011	0.0055	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/l	
7421-93-4	Endrin aldehyde	ND	0.011	0.0056	ug/l	
53494-70-5	Endrin ketone	ND	0.011	0.0056	ug/l	
959-98-8	Endosulfan-I	ND	0.011	0.0055	ug/l	
33213-65-9	Endosulfan-II	ND	0.011	0.0047	ug/l	
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.011	0.0072	ug/l	
72-43-5	Methoxychlor	ND	0.022	0.0062	ug/i	
8001-35-2	Toxaphene	ND	0.27	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	66%		26-1	32%	
877-09-8	Tetrachloro-m-xylene	62%		26-1	32%	
2051-24-3	Decachlorobiphenyl	61%		10-1	18%	
2051-24-3	Decachlorobiphenyl	64%		10-1	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-35D Lab Sample ID: JC33572-9

Matrix: Method:

AQ - Ground Water SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch By Prep Date **Prep Batch** File ID DF Analyzed V4B2779 Run #1 4B67591.D 12/21/16 HT n/a n/a

Run #2

Project:

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units Q

5.0 106-99-0 1,3-Butadiene ND 0.17 ug/l

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 99% 76-120% 1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4 101% 73-122% 84-119% 2037-26-5 Toluene-D8 97% 78-117% 4-Bromofluorobenzene 114% 460-00-4

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-35D

Lab Sample ID: JC33572-9

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed Ву **Prep Date** Prep Batch 12/19/16 12/16/16 OP99259 EF6882 Run #1 F163383.D 1 RL

Run #2

Initial Volume

1000 ml

Final Volume 1.0 ml

Run #1

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-35D

Lab Sample ID: JC33572-9 AQ - Ground Water

Matrix: Method:

SW846 8270D SW846 3510C

Report of Analysis

Project: BMSMC, Building 5 Area, PR Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.65	սց/1
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l
123-91-1	1,4-Dioxane	25.0	1.0	0.66	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	սք/1
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	սք/1
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	սք/1
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

367-12-4 2-Fluorophenol 47%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Report of Analysis

Client Sample ID: S-35D Lab Sample ID:

JC33572-9

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	27%		10-110%
118-79-6	2,4,6-Tribromophenol	83%		39-149%
4165-60-0	Nitrobenzene-d5	81%		32-128%
321-60-8	2-Fluorobiphenyl	77%		35-119%
1718-51-0	Terphenyl-d14	67%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-35D Lab Sample ID:

JC33572-9

Matrix:

AQ - Ground Water

Date Sampled: 12/09/16 Date Received: 12/13/16

Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Q

Project:

BMSMC, Building 5 Area, PR

							
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3P57309.D	1	12/16/16	AD	12/16/16	OP99259A	E3P2658

Run #2

Initial Volume Final Volume 1000 ml Run #1 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.050	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.050	0.033	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.043	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/l
218-01-9	Chrysene	ND	0.10	0.026	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.036	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l
91-20-3	Naphthalene	ND	0.10	0.029	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
4165-60-0	Nitrobenzene-d5	63%		24-13	25%
321-60-8	2-Fluorobiphenyl	57%		19-127%	
1718-51-0	Terphenyl-d14	50%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: S-35D Lab Sample ID: JC33572-9

Matrix: Method:

Project:

AQ - Ground Water

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16 Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107812.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	սց/1	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
111-27-3	Hexanol	95%		56-1	45%	
111-27-3	Hexanol	86%		56-1	45%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-35D

Lab Sample ID: JC33572-9

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

By **Analytical Batch** File ID DF Analyzed **Prep Date** Prep Batch OP99257 G1G4173 Run #1 1G130596.D 12/16/16 KD 12/15/16 1

Run #2

Initial Volume

Final Volume

990 ml

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	
309-00-2	Aldrin	ND	0.010	0.0061	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0050	սք/l	
72-20-8	Endrin	ND	0.010	0.0051	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l	
959-98-8	Endosulfan-l	ND	0.010	0.0050	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0043	սք/1	
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	64%		26-13	32%	
877-09-8	Tetrachloro-m-xylene	64%		26-132%		
2051-24-3	Decachlorobiphenyl	76%		10-1	18%	
2051-24-3	Decachlorobiphenyl	83%		10-1	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

HT

n/a

Page 1 of 1

Client Sample ID: FB120916

Lab Sample ID: JC33572-10

File ID

4B67587.D

Matrix: AQ - Field Blank Water Method: SW846 8260C

BMSMC, Building 5 Area, PR Project:

DF

Date Sampled: 12/09/16

n/a

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch Prep Date Prep Batch

V4B2779

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units Q

Analyzed

12/21/16

106-99-0 ND 5.0 1,3-Butadiene 0.17 ug/l

Run# 2 CAS No. Surrogate Recoveries Run#1 Limits 1868-53-7 Dibromofluoromethane 76-120% 101% 17060-07-0 1.2-Dichloroethane-D4 109% 73-122% 2037-26-5 Toluene-D8 97% 84-119%

4-Bromofluorobenzene 78-117% 460-00-4 112%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: FB120916 Lab Sample ID:

JC33572-10 AQ - Field Blank Water

Matrix: Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F163384.D	1	12/19/16	RL	12/16/16	OP99259	EF6882

Run #2

Final Volume **Initial Volume**

925 ml

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	0.89	ug/i
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.96	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2.6	ug/i
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.96	ug/l
	3&4-Methylphenol	ND	2.2	0.95	u <u>e</u> /1
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.3	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.42	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	սջ/1
98-86-2	Acetophenone	ND	2.2	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.48	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.49	ug/l
92-52-4	1, I'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

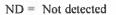
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB120916

Lab Sample ID: JC33572-10
Matrix: AQ - Field Blank Water


Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 **Date Received:** 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.70	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.60	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
53-70-3	Dibenzo(a, h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.54	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	սը/1	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.69	ug/l	POCHOO V
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	age.
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/1	1257
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	fuel Infante
129-00-0	Pyrene	ND	1.1	0.24	ug/l	Mendez
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	IC * 1908
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	MCO LICENCI
367-12 - 4	2-Fluorophenol	52%		14-8	8%	
4165-62-2	Phenol-d5	30%		10-1	10%	

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

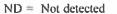
B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: FB120916

Lab Sample ID: JC33572-10 Matrix:

AQ - Field Blank Water Method: SW846 8270D SW846 3510C Project:


Date Sampled: 12/09/16 Date Received: 12/13/16 Percent Solids: n/a

BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	85%		39-149%
4165-60-0	Nitrobenzene-d5	79%		32-128%
321-60-8	2-Fluorobiphenyl	78%		35-119%
1718-51-0	Terphenyl-d14	99%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

By

AD

Prep Date

24-125%

19-127%

10-119%

12/16/16

Page 1 of 1

Client Sample ID: FB120916 Lab Sample ID:

JC33572-10

File ID

3P57310.D

AQ - Field Blank Water SW846 8270D BY SIM SW846 3510C

Analyzed

12/16/16

Date Sampled: Date Received:

12/09/16 12/13/16

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Run #1

DF

1

Prep Batch OP99259A

Q

Analytical Batch E3P2658

Run #2

Initial Volume Final Volume

Run #1

4165-60-0

321-60-8

1718-51-0

925 ml 1.0 ml

tun	#2	

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.054	0.025	ug/l
50-32-8	Benzo(a)pyrene	ND	0.054	0.036	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.047	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.036	ug/l
218-01-9	Chrysene	ND	0.11	0.028	սք/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.039	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.041	ug/l
91-20-3	Naphthalene	ND	0.11	0.032	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.053	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

63%

59%

67%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

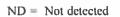
Client Sample ID: FB120916

Lab Sample ID: JC33572-10

Matrix: AQ - Field Blank Water Method: SW846-8015C (DAI) Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107813.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	109%		56-1	45%	
111-27-3	Hexanol	93%		56-1	45%	
						- 1

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB120916

JC33572-10

Lab Sample ID:

AQ - Field Blank Water

Matrix: Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled:

Q

12/09/16

Date Received: 12/13/16

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** G1G4173 12/16/16 KD 12/15/16 OP99257 Run #1 1G130597.D 1

Run #2

Run #1

Run #2

Initial Volume

Final Volume

990 ml

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	59%		26-13	32%
877-09-8	Tetrachloro-m-xylene	59%		26-13	32%
2051-24-3	Decachlorobiphenyl	58%		10-1	18%
2051-24-3	Decachlorobiphenyl	63%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-36

Lab Sample ID: JC33572-11

Matrix:

AQ - Ground Water

Method:

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	4B67590.D	1	12/21/16		n/a	n/a	V4B2779	

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	О
						-

106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		76-120%
17060-07-0	1,2-Dichloroethane-D4	106%		73-122%
2037-26-5	Toluene-D8	98%		84-119%
460-00-4	4-Bromofluorobenzene	112%		78-117%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: S-36

Lab Sample ID: JC33572-11

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

Q

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F163385.D	1	12/19/16	RL	12/16/16	OP99259	EF6882

Run #2

Final Volume Initial Volume

Run #1

1000 ml

1.0 ml

Run #2

ABN TCL Special List

CAS No. Compound		Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.21	ug/i
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-36

Lab Sample ID: JC33572-11

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

•	CAS No.	Compound	Result	RL	MDL	Units	Q
	105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
	218-01-9	Chrysene	ND	1.0	0.18	ug/l	
	111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
	111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
	108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
•	7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
	121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
(606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
-	91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
	53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
	132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
1	84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
	117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
1	84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
	131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
	117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
	206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
1	86-73-7	Fluorene	ND	1.0	0.17	ug/l	
	118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
	87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
•	77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
(67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
	193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
,	78-59-1	Isophorone	ND	2.0	0.28	ug/l	
9	90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
9	91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
1	88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
- (99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
	100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	SOCIADO
9	98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	100
(621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	/23/
1	86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	tael Infante
1	85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	Méndez
	129-00-0	Pyrene	ND	1.0	0.22	ug/l	lC # 1888
	95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	The second
(CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	CO LICENCIA
	367-12-4	2-Fluorophenol	44%		14-	38%	
		m) () () ()	- 4-4			1.004	

ND = Not detected

4165-62-2

MDL = Method Detection Limit

26%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Phenol-d5

J = Indicates an estimated value

10-110%

B = Indicates analyte found in associated method blank

Client Sample ID: S-36

Lab Sample ID: JC33572-11

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	82%		39-149%
4165-60-0	Nitrobenzene-d5	75%		32-128%
321-60-8	2-Fluorobiphenyl	77%		35-119%
1718-51-0	Terphenyl-d14	64%		10-126%

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-36

Lab Sample ID: JC33572-11

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

O

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed **Prep Date** Prep Batch By OP99259A E3P2658 3P57311.D 12/16/16 AD 12/16/16 Run #1 1

Run #2

Initial Volume Final Volume 1000 ml 1.0 ml

Run #1 Run #2

321-60-8

1718-51-0

CAS No. Compound Result RL **MDL** Units 0.023 Benzo(a)anthracene ND 0.050 ug/l 56-55-3 50-32-8 Benzo(a)pyrene ND 0.050 0.033 ug/l 0.043 205-99-2 Benzo(b)fluoranthene ND 0.10 ug/l 0.033 ND 0.10 ug/l 207-08-9 Benzo(k)fluoranthene 0.026218-01-9 Chrysene ND 0.10 ug/l 0.10 0.036 ug/I 53-70-3 Dibenzo(a,h)anthracene ND ND 0.10 0.038 193-39-5 Indeno(1,2,3-cd)pyrene ug/l 0.029 91-20-3 Naphthalene ND 0.10 ug/l 123-91-1 1,4-Dioxane 0.290 0.10 0.049 ug/l Run# 2 CAS No. Surrogate Recoveries Run# 1 Limits 4165-60-0 Nitrobenzene-d5 61% 24-125%

55%

48%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorobiphenyl

Terphenyl-d14

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-36

Lab Sample ID: JC33572-11

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16 Date Received: 12/13/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107814.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohoi	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	91%		56-1	45%
111-27-3	Hexanol	81%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

KD

Prep Date

12/15/16

Analyzed

12/16/16

Page 1 of 1

Client Sample ID: S-36

Lab Sample ID: JC33572-11

File ID

1G130598.D

Matrix:

AQ - Ground Water

DF

1

Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/16

Date Received: 12/13/16

Percent Solids: n/a

OP99257

Q

Analytical Batch Prep Batch

G1G4173

Run #1 Run #2

Run #1

Run #2

Initial Volume

Final Volume

980 ml

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	78%		26-13	32%
877-09-8	Tetrachloro-m-xylene	77%		26-13	32%
2051-24-3	Decachlorobiphenyl	45%		10-1	18%
2051-24-3	Decachlorobiphenyl	49%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-39D

Lab Sample ID: JC33572-12

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260C BMSMC, Building 5 Area, PR Date Sampled: 12/12/16

Date Received: 12/13/16

Percent Solids: n/a

Analytical Batch File ID By **Prep Date** Prep Batch DF Analyzed V4B2779 Run #1 4B67589.D 12/21/16 HT n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units Q

5.0 106-99-0 ND 0.17 1,3-Butadiene ug/l

Surrogate Recoveries Run#1 Run# 2 Limits CAS No.

76-120% 1868-53-7 Dibromofluoromethane 101% 73-122% 17060-07-0 1,2-Dichloroethane-D4 108% Toluene-D8 97% 84-119% 2037-26-5 78-117% 4-Bromofluorobenzene 460-00-4

109%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

 $\mathbf{B}\mathbf{y}$

RL

12/16/16

Page 1 of 3

Client Sample ID: S-39D

Lab Sample ID: JC33572-12

File ID

F163386.D

Matrix:

AQ - Ground Water

DF

1

SW846 8270D SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/12/16

Date Received: 12/13/16

EF6882

Percent Solids: n/a

OP99259

Q

Analytical Batch Prep Date Prep Batch

Run #1 Run #2

Run #1 Run #2 **Initial Volume**

Final Volume

Analyzed

12/19/16

900 ml

1.0 ml

ABN TCL Special List

CAS No. Compound		Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l
	3&4-Methylphenol	ND	2.2	0.98	ug/l
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l
100-02-7	4-Nitrophenol	ND	- 11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.44	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	0.1	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-39D Lab Sample ID: JC33572-12

Matrix: AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/12/16 Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.72	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
123-91-1	1,4-Dioxane	51.6	1.1	0.73	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
129-00-0	Pyrene	ND	1.1	0.24	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

MDL = Method Detection Limit

47%

2-Fluorophenol

ND = Not detected RL = Reporting Limit

367-12-4

E = Indicates value exceeds calibration range

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

Client Sample ID: S-39D Lab Sample ID: JC33572-12

Matrix:

Method: Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/12/16

Date Received: 12/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	30%		10-110%
118-79-6	2,4,6-Tribromophenol	90%		39-149%
4165-60-0	Nitrobenzene-d5	76%		32-128%
321-60-8	2-Fluorobiphenyl	79%		35-119%
1718-51-0	Terphenyl-d14	71%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-39D Lab Sample ID:

JC33572-12

AQ - Ground Water

Date Sampled: 12/12/16 Date Received: 12/13/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Q

Project:

BMSMC, Building 5 Area, PR

		File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Rı	un #1	4M69118.D	I	12/20/16	SG	12/16/16	OP99259A	E4M3168
Rı	ın #2	F163386.D	1	12/19/16	RL	12/16/16	OP99259A	EF6882

	Initial Volume	Final Volume	
Run #1	900 ml	1.0 ml	
Run #2	900 ml	1.0 ml	

CAS No.	Compound	Result	RL	MDL	Units
50-32-8	Benzo(a)pyrene	ND	0.056	0.037	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.048	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.037	ug/l
218-01-9	Chrysene	ND	0.11	0.029	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.040	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.042	ug/l
91-57-6	2-Methylnaphthalene	ND	0.11	0.026	ug/l
91-20-3	Naphthalene	ND	0.11	0.033	ug/l
123-91-1	1,4-Dioxane	51.6 a	0.11	0.054	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	81%	76%	24-1	25%
321-60-8	2-Fluorobiphenyl	72%	79%	19-1	27%

68%

71%

10-119%

(a) Result is from Run# 2

Terphenyl-d14

1718-51-0

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-39D

Lab Sample ID: JC33572-12

Matrix: Method:

Project:

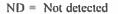
AQ - Ground Water SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/12/16

Q

Date Received: 12/13/16


Percent Solids: n/a

	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107797.D	1	12/16/16	XPL	n/a	n/a	GGH5590
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5 78-83-1	Ethanol Isobutyl Alcohol	ND ND	200 100	55 36	ug/l ug/l
67-63-0 71-23-8	Isopropyl Alcohol	ND ND	100	68 43	ug/l
71-36-3	n-Propyl Alcohol n-Butyl Alcohol	ND	100	87	ug/l ug/l
78-92-2 67-56-1	sec-Butyl Alcohol Methanol	ND ND	100 200	66 71	սք/l սք/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3 111-27-3	Hexanol Hexanol	97% 82%			45% 45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

KD

12/15/16

Analyzed

12/16/16

Page 1 of 1

Client Sample ID: S-39D

Lab Sample ID: JC33572-12

File ID

1G130599.D

Matrix: Method: AQ - Ground Water

DF

1

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/12/16

Date Received: 12/13/16

G1G4173

Percent Solids: n/a

OP99257

Q

Analytical Batch Prep Date Prep Batch

Run #1 Run #2

> Initial Volume Final Volume

990 ml

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	72%		26-13	32%
877-09-8	Tetrachloro-m-xylene	60%		26-13	32%
2051-24-3	Decachlorobiphenyl	73%		10-1	18%
2051-24-3	Decachlorobiphenyl	70%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JC33572-12MS	4B67600.D	1	12/21/16	HT	n/a	n/a	V4B2779
JC33572-12MSD	4B67601.D	1	12/21/16	HT	n/a	n/a	V4B2779
JC33572-12	4B67589.D	1	12/21/16	HT	n/a	n/a	V4B2779

The QC reported here applies to the following samples:

JC33572-4, JC33572-5, JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

CAS No.	Compound	JC33572-12 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/I	MSD ug/l	MSD %	RPD	Limits Rec/RPD
106-99-0	1,3-Butadiene	ND	50	42.3	85	50	44.1	88	4	10-167/20
CAS No.	Surrogate Recoveries	MS	MSD	JC33	3572-12	Limits				
1868-53-7	Dibromofluoromethane	101%	102%	1019	6	76-120%				
17060-07-0	1,2-Dichloroethane-D4	101%	97%	1089	6	73-122%				
2037-26-5	Toluene-D8	97%	97%	97%		84-119%				
460-00-4	4-Bromofluorobenzene	102%	103%	1099	6	78-117%				

Method: SW846 8260C

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99259-MS	F163376.D	Ţ	12/19/16	RL	12/16/16	OP99259	EF6882
OP99259-MSD	F163377.D	1	12/19/16	RL	12/16/16	OP99259	EF6882
JC33572-12	F163386.D	1	12/19/16	RL	12/16/16	OP99259	EF6882

The QC reported here applies to the following samples:

Method: SW846 8270D

JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

		JC33572-12	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	0/0	ug/l	ug/i	%	RPD	Rec/RPD
95-57-8	2-Chlorophenol	ND	52.6	34.4	65	55.6	36.8	66	7	49-110/20
59-50-7	4-Chloro-3-methyl phenol	ND	52.6	36.1	69	55.6	40.8	73	12	44-121/18
120-83-2	2,4-Dichlorophenol	ND	52.6	37.5	71	55.6	40.1	72	7	42-120/19
105-67-9	2,4-Dimethylphenol	ND	52.6	40.1	76	55.6	45.4	82	12	33-132/23
51-28-5	2,4-Dinitrophenol	ND	105	72.8	69	111	81.8	74	12	21-145/26
534-52-1	4,6-Dinitro-o-cresol	ND	52.6	44.4	84	55.6	47.8	86	7	25-134/27
95-48-7	2-Methylphenol	ND	52.6	32.3	61	55.6	34.8	63	7	47-112/18
	3&4-Methylphenol	ND	52.6	32.6	62	55.6	37.7	68	15	44-113/19
88-75-5	2-Nitrophenol	ND	52.6	36.5	69	55.6	37.0	67	1	45-118/20
100-02-7	4-Nitrophenol	ND	52.6	32.2	61	55.6	38.0	68	17	23-144/28
87-86-5	Pentachlorophenol	ND	52.6	32.6	62	55.6	32.7	59	0	25-151/25
108-95-2	Phenol	ND	52.6	17.0	32	55.6	18.8	34	10	22-100/22
58-90-2	2,3,4,6-Tetrachlorophenol	ND	52.6	39.0	74	55.6	40.9	74	5	44-122/21
95-95-4	2,4,5-Trichlorophenol	ND	52.6	42.4	81	55.6	45.5	82	7	51-124/20
88-06-2	2,4,6-Trichlorophenol	ND	52.6	41.3	78	55.6	46.7	84	12	53-120/21
83-32-9	Acenaphthene	ND	52.6	42.1	80	55.6	47.7	86	12	52-120/23
208-96-8	Acenaphthylene	ND	52.6	40.9	78	55.6	45.1	81	10	50-101/22
98-86-2	Acetophenone	ND	52.6	41.0	78	55.6	40.4	73	1	31-141/23
120-12-7	Anthracene	ND	52.6	43.3	82	55.6	46.5	84	7	54-117/22
1912-24-9	Atrazine	ND	52.6	47.8	91	55.6	49.2	89	3	42-152/23
100-52-7	Benzaldehyde	ND	52.6	34.7	66	55.6	34.8	63	0	10-164/30
56-55-3	Benzo(a)anthracene	ND	52.6	42.0	80	55.6	47.2	85	12	40-123/24
50-32-8	Benzo(a)pyrene	ND	52.6	41.0	78	55.6	45.7	82	11	41-127/25
205-99-2	Benzo(b)fluoranthene	ND	52.6	42.9	82	55.6	47.5	86	10	39-127/27
191-24-2	Benzo(g,h,i)perylene	ND	52.6	42.2	80	55.6	45.6	82	8	34-128/28
207-08-9	Benzo(k)fluoranthene	ND	52.6	44.8	85	55.6	48.5	87	8	39-122/26
101-55-3	4-Bromophenyl phenyl ether	ND	52.6	47.8	91	55.6	51.5	93	7	51-124/23
85-68-7	Butyl benzyl phthalate	ND	52.6	43.4	82	55.6	49.2	89	13	21-146/28
92-52-4	1,1'-Biphenyl	ND	52.6	43.5	83	55.6	47.4	85	9	27-142/23
91-58-7	2-Chloronaphthalene	ND	52.6	42.6	81	55.6	46.8	84	9	51-109/23
106-47-8	4-Chloroaniline	ND	52.6	31.6	60	55.6	32.3	58	2	10-110/55
86-74-8	Carbazole	ND	52.6	45.7	87	55.6	48.2	87	5	52-116/22
105-60-2	Caprolactam	ND	52.6	7.6	14	55.6	12.7	23	50* a	10-106/34
218-01-9	Chrysene	ND	52.6	42.1	80	55.6	46.3		10	41-128/24
111-91-1	bis(2-Chloroethoxy)methane	ND	52.6	40.6	77	55.6	CALBRICA		4	46-120/24
111-44-4	bis(2-Chloroethyl)ether	ND	52.6	41.6	79		41.6	73		42-123/28
,		–				1.3			201	

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8270D

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99259-MS	F163376.D	1	12/19/16	RL	12/16/16	OP99259	EF6882
OP99259-MSD	F163377.D	1	12/19/16	RL	12/16/16	OP99259	EF6882
JC33572-12	F163386.D	1	12/19/16	RL	12/16/16	OP99259	EF6882

The QC reported here applies to the following samples:

JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

CAS No.	Compound	JC33572-12 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		-8-	-8-	-8 -		-8	-8 -			
108-60-1	bis(2-Chloroisopropyl)ether	ND	52.6	36.6	70	55.6	36.1	65	I	41-117/25
7005-72-3	4-Chlorophenyl phenyl ether	ND	52.6	43.3	82	55.6	48.6	87	12	48-121/21
121-14-2	2,4-Dinitrotoluene	ND	52.6	44.6	85	55.6	49.4	89	10	54-123/27
606-20-2	2,6-Dinitrotoluene	ND	52.6	43.5	83	55.6	50.8	91	15	55-125/26
91-94-1	3,3'-Dichlorobenzidine	ND	105	83.0	79	111	92.3	83	11	10-107/47
123-91-1	1,4-Dioxane	51.6	52.6	72.4	40	55.6	72.1	37	0	10-119/31
53-70-3	Dibenzo(a,h)anthracene	ND	52.6	43.6	83	55.6	47.6	86	9	35-130/27
132-64-9	Dibenzofuran	ND	52.6	43.2	82	55.6	47.3	85	9	53-112/22
84-74-2	Di-n-butyl phthalate	ND	52.6	44.2	84	55.6	49.5	89	11	38-129/23
117-84-0	Di-n-octyl phthalate	ND	52.6	46.6	89	55.6	50.5	91	8	35-145/26
84-66-2	Diethyl phthalate	ND	52.6	43.8	83	55.6	49.2	89	12	16-136/30
131-11-3	Dimethyl phthalate	ND	52.6	43.0	82	55.6	48.4	87	12	10-143/39
117-81-7	bis(2-Ethylhexyl)phthalate	ND	52.6	47.6	90	55.6	50.2	90	5	34-141/28
206-44-0	Fluoranthene	ND	52.6	45.2	86	55.6	49.1	88	8	47-123/24
86-73-7	Fluorene	ND	52.6	42.9	82	55.6	48.7	88	13	56-117/22
118-74-1	Hexachlorobenzene	ND	52.6	47.2	90	55.6	50.5	91	7	46-125/24
87-68-3	Hexachlorobutadiene	ND	52.6	29.9	57	55.6	30.5	55	2	26-121/24
77-47-4	Hexachlorocyclopentadiene	ND	105	48.6	46	111	57.9	52	17	10-133/31
67-72-1	Hexachloroethane	ND	52.6	32.8	62	55.6	35.7	64	8	35-111/26
193-39-5	Indeno(1,2,3-cd)pyrene	ND	52.6	42.1	80	55.6	45.8	82	8	32-130/30
78-59-1	Isophorone	ND	52.6	35.7	68	55.6	37.2	67	4	47-126/23
90-12-0	1-Methylnaphthalene	ND	52.6	35.2	67	55.6	36.8	66	4	34-124/25
91-57-6	2-Methylnaphthalene	ND	52.6	35.9	68	55.6	37.0	67	3	34-123/24
88-74-4	2-Nitroaniline	ND	52.6	43.2	82	55.6	47.4	85	9	46-137/23
99-09-2	3-Nitroaniline	ND	52.6	35.8	68	55.6	39.3	71	9	10-110/50
100-01-6	4-Nitroaniline	ND	52.6	37.9	72	55.6	42.2	76	11	38-118/25
98-95-3	Nitrobenzene	ND	52.6	35.1	67	55.6	36.6	66	4	35-130/25
621-64-7	N-Nitroso-di-n-propylamine	ND	52.6	38.3	73	55.6	38.4	69	0	45-123/22
86-30-6	N-Nitrosodiphenylamine	ND	52.6	42.7	81	55.6	46.0	83	7	46-123/24
85-01-8	Phenanthrene	ND	52.6	43.9	83	55.6	48.5	87	10	48-121/23
129-00-0	Pyrene	ND	52.6	44.0	84	55.6	49.2	89	11	43-124/26
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	52.6	42.0	80	55.6	46.7	84	11	25-142/24

^{* =} Outside of Control Limits.

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99259-MS	F163376.D	1	12/19/16	RL	12/16/16	OP99259	EF6882
OP99259-MSD	F163377.D	1	12/19/16	RL	12/16/16	OP99259	EF6882
JC33572-12	F163386.D	1	12/19/16	RL	12/16/16	OP99259	EF6882

The QC reported here applies to the following samples:

JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

CAS No.	Surrogate Recoveries	MS	MSD	JC33572-12	Limits
367-12-4	2-Fluorophenol	55%	55%	47%	14-88%
4165-62-2	Phenol-d5	46%	46%	30%	10-110%
118-79-6	2,4,6-Tribromophenol	93%	92%	90%	39-149%
4165-60-0	Nitrobenzene-d5	73%	70%	76%	32-128%
321-60-8	2-Fluorobiphenyl	85%	86%	79%	35-119%
1718-51-0	Terphenyl-d14	63%	82%	71%	10-126%

(a) Analytical precision exceeds in-house control limits.

Method: SW846 8270D

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP99259A-MS	4M69114.D	1	12/20/16	SG	12/16/16	OP99259A	E4M3168
OP99259A-MSD	4M69115.D	1	12/20/16	SG	12/16/16	OP99259A	E4M3168
JC33572-12	F163386.D	1	12/19/16	RL	12/16/16	OP99259A	EF6882
JC33572-12	4M69118.D	1	12/20/16	SG	12/16/16	OP99259A	E4M3168

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

		JC33572-12	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	0/0	ug/l	ug/l	%	RPD	Rec/RPD
56-55-3	Benzo(a)anthracene	ND a	1	0.800	80	1	0.789	79	1	25-135/33
50-32-8	Benzo(a)pyrene	ND a	1	0.640	64	i	0.673	67	5	10-116/38
205-99-2	Benzo(b)fluoranthene	ND a	1	0.723	72	i	0.719	72	1	10-131/40
207-08-9	Benzo(k)fluoranthene	ND a	1	0.596	60	1	0.708	71	17	10-120/45
218-01-9	Chrysene	ND a	1	0.763	76	1	0.816	82	7	31-125/33
53-70-3	Dibenzo(a, h)anthracene	ND a	1	0.300	30	1	0.409	41	31	10-116/48
193-39-5	Indeno(1,2,3-cd)pyrene	ND a	1	0.371	37	1	0.460	46	21	10-116/48
91-57-6	2-Methylnaphthalene	ND a	1	0.916	92	1	0.887	89	3	25-147/39
91-20-3	Naphthalene	ND a	1	0.879	88	1	0.864	86	2	23-140/36
123-91-1	1,4-Dioxane	51.6	1	62.2	190* b	1	66.7	640* b	7	20-160/30
CAS No.	Surrogate Recoveries	MS	MSD	JC:	33572-12	JC3357	2-12 Lir	nits		
367-12-4	2-Fluorophenol	61%	59%				14-	81%		
4165-62-2	Phenol-d5	42%	40%				11-	54%		
118-79-6	2,4,6-Tribromophenol	96%	98%				35-	145%		
4165-60-0	Nitrobenzene-d5	89%	88%	769	6	81%	24-	125%		
321-60-8	2-Fluorobiphenyl	79%	75%	79%	6	72%	19-	19-127%		
1718-51-0	Terphenyl-d14	56%	62%	719	6	68%	10-	119%		

- (a) Result is from Run #2.
- (b) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846-8015C (DAI)

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample JC33572-12MS JC33572-12MSD JC33572-12	File ID GH107798.D GH107799.D GH107797.D	DF I I	Analyzed 12/16/16 12/16/16 12/16/16	By XPL XPL XPL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GGH5590 GGH5590 GGH5590

The QC reported here applies to the following samples:

JC33572-1, JC33572-2, JC33572-3, JC33572-4, JC33572-5, JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-9 10, JC33572-11, JC33572-12

_ · · · · · · · · · · · · · · · · · · ·	MS MS	Spike MSD	MSD	DDD	Limits
Q ug/I	ug/l %	ug/I ug/I	%	KPD	Rec/RPD
5000	4810 96	5000 5250	105	9	58-145/27
5000	5120 102	5000 5350	107	4	69-131/25
5000	4370 87	5000 5680	114	26	70-133/28
5000	5110 102	5000 5110	102	0	66-137/29
5000	5230 105	5000 5020	100	4	63-131/25
5000	6060 121	5000 5300	106	13	64-136/25
5000	4960 99	5000 5660	113	13	48-148/34
MSD	JC33572-12	Limits			
75%	97%	56-145%			
74%	82%	56-145%			
	5000 5000 5000 5000 5000 5000	Q ug/l ug/l % 5000 4810 96 5000 5120 102 5000 4370 87 5000 5110 102 5000 5230 105 5000 6060 121 5000 4960 99 MSD JC33572-12	Q ug/l ug/l % ug/l ug/l 5000 4810 96 5000 5250 5000 5120 102 5000 5350 5000 4370 87 5000 5680 5000 5110 102 5000 5110 5000 5230 105 5000 5020 5000 6060 121 5000 5300 5000 4960 99 5000 5660 MSD JC33572-12 Limits	Q ug/l ug/l % ug/l ug/l % 5000 4810 96 5000 5250 105 5000 5120 102 5000 5350 107 5000 4370 87 5000 5680 114 5000 5110 102 5000 5110 102 5000 5230 105 5000 5020 100 5000 6060 121 5000 5300 106 5000 4960 99 5000 5660 113 MSD JC33572-12 Limits	Q ug/l ug/l % ug/l ug/l % RPD 5000 4810 96 5000 5250 105 9 5000 5120 102 5000 5350 107 4 5000 4370 87 5000 5680 114 26 5000 5110 102 5000 5110 102 0 5000 5230 105 5000 5020 100 4 5000 6060 121 5000 5300 106 13 5000 4960 99 5000 5660 113 13 MSD JC33572-12 Limits

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846 8081B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33572

AMANYWP Anderson, Mulholland & Associates Account:

BMSMC, Building 5 Area, PR Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP99257-MS	1G130600.D	1	12/16/16	KD	12/15/16	OP99257	G1G4173
OP99257-MSD	1G130601.D	1	12/16/16	KD	12/15/16	OP99257	G1G4173
JC33572-12	1G130599.D	1	12/16/16	KD	12/15/16	OP99257	G1G4173

The QC reported here applies to the following samples:

JC33572-1, JC33572-2, JC33572-3, JC33572-4, JC33572-5, JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-9 10, JC33572-11, JC33572-12

CAS No.	Compound	JC33572-12 ug/l Q	Spike ug/I	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
309-00-2	Aldrin	ND	0.53	0.52	98	0.53	0.51	96	2	37-159/40
319-84-6	alpha-BHC	ND	0.53	0.58	109	0.53	0.58	109	0	37-164/37
319-85-7	beta-BHC	ND	0.53	0.61	115	0.53	0.62	117	2	46-151/36
319-86-8	delta-BHC	ND	0.53	0.62	117	0.53	0.65	122	5	32-168/36
58-89-9	gamma-BHC (Lindane)	ND	0.53	0.57	107	0.53	0.56	105	2	44-160/37
5103-71-9	alpha-Chlordane	ND	0.53	0.62	117	0.53	0.62	117	0	38-160/35
5103-74-2	gamma-Chlordane	ND	0.53	0.62	117	0.53	0.62	117	0	39-157/37
60-57-1	Dieldrin	ND	0.53	0.61	115	0.53	0.61	115	0	42-161/36
72-54-8	4,4'-DDD	ND	0.53	0.67	126	0.53	0.71	133	6	40-161/36
72-55-9	4,4'-DDE	ND	0.53	0.58	109	0.53	0.59	111	2	34-158/36
50-29-3	4,4'-DDT	ND	0.53	0.21	39* a	0.53	0.095	18* a	75* a	41-173/33
72-20-8	Endrin	ND	0.53	0.61	115	0.53	0.60	113	2	44-166/35
1031-07-8	Endosulfan sulfate	ND	0.53	0.58	109	0.53	0.60	113	3	46-161/36
7421-93-4	Endrin aldehyde	ND	0.53	0.62	117	0.53	0.64	120	3	34-149/36
53494-70-5	•	ND	0.53	0.50	94	0.53	0.45	85	11	44-157/36
959-98-8	Endosulfan-I	ND	0.53	0.60	113	0.53	0.61	115	2	43-154/35
33213-65-9	Endosulfan-II	ND	0.53	0.57	107	0.53	0.60	113	5	40-162/35
76-44-8	Heptachlor	ND	0.53	0.49	92	0.53	0.44	83	11	33-153/37
1024-57-3	Heptachlor epoxide	ND	0.53	0.63	118	0.53	0.63	118	0	45-154/37
72-43-5	Methoxychlor	ND	0.53	0.25	47* a	0.53	0.15	28* a	50* a	48-169/32
8001-35-2	Toxaphene	ND		ND			ND		nc	50-150/30
CAS No.	Surrogate Recoveries	MS	MSD	JC	33572-12	Limits				

CAS No.	Surrogate Recoveries	MS	MSD	JC33572-12	Limits
877-09-8	Tetrachloro-m-xylene	77%	74%	72%	26-132%
877-09-8	Tetrachloro-m-xylene	67%	65%	60%	26-132%
2051-24-3	Decachlorobiphenyl	75%	86%	73%	10-118%
2051-24-3	Decachlorobiphenyl	73%	85%	70%	10-118%

(a) Outside the QC limits.

^{* =} Outside of Control Limits.

	chai	N OF GUIDADA	PAGE <u>(</u> of <u>2</u>		
\	1 47 (1)	N OF CUSTODY	PAGE (OF C		
$N \setminus N$		Rouse 1 to Dayton, NJ 08810 PP-0200 FAX 732 129 1499/3480 1/45 C+ /	7779 22 14 2307 Botto Driver Control 6		
140		www.accutest.com	BGS No. AND Owner Distance Design According July 7033572		
Client (Reporting Information 22	Way Seal Wife to Project	Information State 1	Requested Analysis ("see TEST CODE sheet) A Codes		
Company Name	Project Name				
Anderson Mulholland & Associates	4th Q 2016 Groundwater Sampling - On-		DW Drawing Water Co.		
Street Address 2700 Westchester Avenue, Suite 417	Street		WW - Wigner SW - Surfaces Wester		
City Sum Zip	Cay State	Billing Information (If different from Report to] Company Name	SW Surface Water SO Sol SL Sharinge		
	77 Humacao PR		S. Sadge SED Sebrend SEBRE		
Proset Contact E-mas Terry Taylor	Prosect #	Street Address			
Phone 8 Fee 8	Cleris Purchase Order #	Cay State Zap	TO CHE WAY AND SEE BY THE PARTY OF THE PARTY		
914-251-0400 Samperts (variets) Phone of	Promot Manager	Attention	F8-Feets Blank E8-Equipment Glank		
Superior Control Contr	Terry Taylor		TOSI TOPIC T		
	Collection	Humber of preserved (Latting	SIM		
Field ID / Point of Collection	MECHOS Viol 8 Date Tane	Secondary of the Color of the C	DR015LRA ABB270SIM ADIO STRING BRS-MANAP		
1 A-2RZ	12-8-16 1233	Nt Gw 6 3 - 3	XXXXXXX EGS		
2 A-1R4	12-8-16 1215	RS GW 16 62116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
3 FB120814	12-8-16 (503	NR FB 63 3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
4 5-34	12-8-16 1542	NR GW 18062116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
5 5-33	12-8-16 1546	R5 GW 03 3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
6 EB 120916	12-9-16 1020	RS EB 6 3 3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
7 S-37	12-9-16 1226	KS GW (0 3 3 3	IX X X X X X X X X X X X X X X X X X X		
8 5-33	12-9-16 1234	NR GW 653 3	XXXXXXX		
9 S-35D	12-9-16 1441	Nr GV 673 3	XXXXXXXXX		
10 FB120916	12-9-16 1-51	RS FB 1873 2	X X X X X X X X X X X X X X X X X X X		
S-36	12-9-16 1531	RS 154 6 3 3			
12 5-39D	12-12-16 1255	NR GN 873			
51-417: Curriamistri Time (Business days)	American St. Child September 1985; 1 Date:	Dela Deliverable Information	Comments / Special instructions 1		
🔣 Std. 14 Businesa Days	112 1/10	Gommercial "A" (Level 1) NYASP Catego Gommercial "B" (Level 2) NYASP Catego			
1 S Day RUSH INITIAL ASES	SEMENT //S	Y PULLTI (Level 2+4) State Forms	BANTH-BENZO(A)ANTHRACENE, BAP-BENZO(A)PYRENE,		
T 2 Day HUSH LABEL VERII	FICATION	☐ HJ Reduced ☐ EDD Formal ☐ Contenercial "C" ☐ Other	BBF+BENZO(B)FLUORANTHENE, BKF-BENZO(K)FLUROANTHENE.		
1 Day RUSH	AU Data of Known Quality Protocol Reporting INDPYRHINDED/PYRHIND PROPARAD HALLENE				
Emmoncy & Rush T/A state evaluate V/A Landra	Emissioning & Rusin TAX states encessable VA Lasteins				
A STATE OF THE PARTY OF THE PARTY OF THE PARTY.	Sample Custody must be docume	nted below such time samples change possession, inclus	Sample inventory is verified upon receipt in the Laboratory ding courier delivery.		
1 12-12		Spinnesshod By:	Date Tyre: 19 December By:		

JC33572: Chain of Custody Page 1 of 4

NJ			CHA	SGS A	- 100 HEAD	Dayton		D	ľ			(FFO.	St Track	when all				-			2	of <u>2</u>
			TEL. 732		FAX:	732-329	3499/						2.7						Order Cas			
Company Name		7.34.20203.00	NAME OF THE	www	* accutest	com	T MET PARK	140752	-	FOR S	7			-00				044.5	COMMAND IN	-	50	33577_
Company Name	Project Name		ALC:	er mioni	12 12 1	4.4	****		C. Bar	1002	TEN C	20 F5	Ri Ri	quest	ed An	V.	1800	TEST	ODE	sheet) 1	# No.	Matrix Codes
Anderson Mulholiand & Associates	4th O 2016	Groundwater S	tmellee (7														Ē		1 1		
Steel Address	Street		anipang - t	PAY 2	Si Pauly	and the same	11248	Ser Sec	milent.	4454	COO PILE	¢	1			1	1	98A			- 1	DW - Drinking Wat GW - Ground Wat WW - Water
2706 Westchexter Avenue, Suite 417 Cay State Zo	Cay		Sim	Ballery	Informat	ion (if dif	Toront	from R	oport I	0}				1				BKF, CHRY, DBANTH BELOW	BELOW)			SW Surface Web
Purchase NY 108	7 Humacao		PR	Campa	ary fileme									ŀ		1	1	품	1 3			SC - Soll SL Studge
Protect E-mail	Protect #			Street	Address					-			1			İ	-	7 2	NOTE			SED-Sedement Of Oil
Terry Taylor Phone s Fax 8	Charti Purchase	A Chatter &		Cay										1		1		, BBF,	₽			LIG - Other Liquid
\$14-251-0400		- Crass		Lay			1	SLater			20	7			1		1	25	SEE			SOL - Other Solid WP - Wipe
Sample(is) Remels) Phone #	Project Marage	W.		Attendo	n			_				\dashv	占	1	ŏ	ı	i	BAP, SEEN	Ě			FB-Field Blank EB-Equipment Blan
	Terry Taylor		Callecture									_ <	Ę	1	₹	وا	8	MAP.	2	- 1		RB- Rense Blank Tis-Trip Dlank
NOS Amended	1		1	T	1		\vdash	Munto	(4) (10)	an-ut l	W F	-] 큐	FE	18	Sell	를	2	F E	CHEMISTRY			
Field ID / Point of Collection	MECHOI VIII a	Delm	Tithe	Employ	Matra	o of botton	اوا	5 5	8 8	17 19090	<u> </u>	DBOTSLIMA	PBOBIPEST	AB&270SL	B8270SIM14DIOX	BMS+IKNAP	BMS+2MMAP	BSIM+BANTH, INDPYR, NAP (WET			
17/ 5-39 D M5		1272-16	1323	NR	GN	7/4	2		1	H		1	1	1	1/	-	-		5		+	LAB USE ONLY
5-39D MSD		12-11-16	(351	NR		7/4	2	H	4	1-1	+	+	1	A	LX,		LX			_	_ _	
	<u> </u>	10,10,10		1191	200	-//	쒸	╫	-	╁╼╁	-{-}		X.	X.	X	<u>×</u>	24.	X				
				1			₩	₩	-	┤┤	+++		-	<u> </u>	-	_		_	_			
		 			\vdash \dashv		-	₩	+	H	++	+	<u> </u>	Ш	\square				_	\perp		
				+-	\vdash		H	╫		Н	- - -		<u> </u>								\perp	
				-	\vdash		H	╫	-	Н	++	-	\square	_			_				\perp	
				-	-			╀	+		+-	-			_							
				1			4-	₩	-	+	- - -				_			\perp				
				-				++		+		-	[
				\vdash			- -	Н	11	+	11	\perp							[
					-		+	H		4	11	1_									7	
Tumaround Time (Business days)	A Contract of the Contract of		SAT TOTAL STATE	Park to				Ш	$\perp \perp$	1			\perp			[\Box	\top			
X Std. 18 Rusiness Dave	Approved By (SGE /				ommercia	Opta 1 La "A" (La		2010 In			SP Categ	Paralitics	or set let	45047	140 M	6964	Comm	enis i S	pecial h	nttruction	क स्टिनीय	Total Park Building
□ # Day RUSH		_			annerth.				\equiv	NYA	IP Categ			NEI C	ND 3	SIRY	INCLL	DES A	ulik, ju	FE3, MN	, VRSK1	178CH4, XNO30,
☐ 3 Day RUSH					ULLTI IL J Meduces)				Format		- fe	IANTI	I-BEN	IZO(A)	ANTH	RACE	NE, BA	LP=BEN	ZO(A)P1	YRENE.
2 Day RUSH 1 Day RUSH		_			ammercia				$\overline{\Box}$	Other][3171	IENZO	1191FL	DORA	MTHE	NE AK	(E=BEN	ZO(K)FL ANTHR/	THE PARTY STATE
other		_			AU Date o	(Known	Dushiy	Protec	ol Rep	orany	,		ū	NDPYI	H-IND	ENO	,2,3-0	OJPY	RENE,	CO(A,H) NAP÷NJ	ANTHR/ APHTHA	ACENE,
Emergency & Rush T/A class averages V/A Labbes				Commerce NJ Reduc	and a Black			_					١.									
	Sarr	ple Custody mu	t be docum	ented bel	ow each	time san	ples (thange	Poor	an a le	or, inclu	iding co	erler de	BILLALLA		_	. 10	Silv	on re	ceipt in	the Lab	oratory
12-12	16 700	FEDE	<u> </u>				etmene !	shed By:	Fe	d.	۔۔ ویں ا			D	12/1	.12	745		r	1		-
Holographic Code Forest		localwad Gy;				- -	-	and By:		- 1	_		_		to Time	///0		********	_	-		
Reimagnahad by: Sala Yessa;		leterad By:				—	salagle i	Feel #		_	ш	Intett		94seCond			4					
		<u></u>					592	-5	19			Nul seure		vanred		-			0	1	Cooler 1	Earny,

JC33572: Chain of Custody Page 2 of 4

EXECUTIVE NARRATIVE

SDG No:

JC33572

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8260C

Number of Samples:

14

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Fourteen (14) samples were analyzed for selected VOAs of the TCL list (1,3-butadiene) by method SW846-8260C. Samples were validated following USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

January 23, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33572-1

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-2

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-3

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-4

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-5

. . . .

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16
Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-6

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-7

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-8

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-9

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-10

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

. . . .

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-11

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16
Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-12

Sample location: BMSMC Building 5 Area

Sampling date: 12-Dec-16 Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-12MS

Sample location: BMSMC Building 5 Area

Sampling date: 12-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 42.3 ug/l 1 - Yes

Sample ID: JC33572-12MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12-Dec-16 Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 44.1 ug/l 1 - U Yes

Project Number:	_JC33572
Date:Dece	mber_08-12,_2016
Shipping date:	_December_12,_2016
EPA Region:	2
ANIC PACKAGE	

REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

listed on the data review worksheets are from the primanoted.	
The hardcopied (laboratory name)Accutestbeen reviewed and the quality control and performance daincluded:	data package received has ata summarized. The data review for VOCs
Lab. Project/SDG No.:JC33572	
X Holding TimesX GC/MS TuningX Internal Standard Performance	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits om_the_TCL_list_(SW846_8260C)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nandeled Reviewer:	

DATA REVIEW WORKSHEETS

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
1		
<u> </u>		
	1	
		1
		1

DATA REVIEW WORKSHEETS

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All complex and	lyzad within mathad rae	commanded holding time	o Sama	loc proporty proconyed
Ali samples anai		ommended noiding um	ie. Samp	les properly preserved.
			+	
		i.		

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 5.6° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4°C \pm 2°C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days

from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.

- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤ 7 days	No q	ualification	
A	No	> 7 days	J	R	
Aqueous		≤ 14 days	No qualification		
	Yes	> 14 days	J	R	
N T	No	≤ 14 days	J	Professional judgment, UJ or R	
Non-Aqueous	Yes	≤ 14 days	No g	ualification	
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No qualification		
TCLP/SPLP	No	> 14 days	J	R	

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J	R
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R
Sample temperature outside 4°C ± 2°C upon receipt at the laboratory		Use profess	sional judgment
Holding times grossly exceeded J		R	

All	criteria were met _	X
Criteria were	not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___The BFB performance results were reviewed and found to be within the specified criteria.

__X___BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/572, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

List	the	samples	affected
	on is in error, all associated da		

Use professional judgment to determine whether associated data should be qualified based on the

All criteria were met _	_X_	_
Criteria were not met		
and/or see below		

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:12/08/16	
Dates of continuing (initial) calibration:	12/08/16
Dates of continuing calibration:	_12/18/16;_12/20/16
Dates of ending calibration:	S (25):
Instrument ID numbers:	GCMS4B
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
8					

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria. Closing calibration check verification not included in data package. No action taken, professional judgment.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum	Opening	Closing
	RRF	%RSD_	Maximum %D¹	Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1,2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1.1,1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1.2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1.3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1,1.2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

	Minimum	Maximum	Opening	Closing
Analyte	RRF	%RSD	Maximum %D¹	Maximu <u>m</u>
m,p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1,2,2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1.2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1,2,3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compoun	d			
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene-da	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-do	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-da	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1.3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-d2	0.200	20.0	±25.0	±25.0
1.2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	υJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
*•RSD > Maximum *•RSD in Table for target analyte	J	Use professional judgment	
*•RSD ≤ Maximum *•RSD in Table for target analyte	No qualification	No qualification	

All criteria were met _	X_	
Criteria were not met		
and/or see below		

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table) . If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	Ac	tion
CCV	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required	Use professional judgment	Use professional judgment
	frequency	R	R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF > Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
95D outside the Opening Maximum 95D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	UJ .
% D within the inclusive Opening Maximum % D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table for target analyte	No qualification	No qualification

All criteria were met	_X	
Criteria were not met		
and/or see below		_

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0~\mu g/L$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0~\mu g/k$ g for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	UNITS
			ks	
Field/Equipme	ent/Trip blank			
If field or trip b the method bla		nt, the data revi	ewer should evaluate thi	s data in a similar fashion a
DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
				s_detected_in_the_field/
	7			13 A

All criteria were metX	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CDOL *	< CRQL*	Report CRQL value with a U
	< CRQL *	≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field,		≥ CRQL* and ≤	Report blank value for sample
Trip.	> CRQL *	blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and >	No qualification required
LEB.		blank concentration	140 quantication required
Instrument**	= CRQL*	≤ CRQL*	Report CRQL value with a U
	- CRQL	> CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	contamination	Detects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					-
					-3
				-	
	1				
The second					

All criteria were met _X_	
Criteria were not met	
and/or see below	

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID Date DMCs % Recovery Action

Note: DMCs recoveries within the required limits and within the guidance document performance criteria (80 – 120). Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action		
Criteria	Detect Associated Non-detec Compounds Com		
%R < 10%	J-	R	
10% ≤ %R < Łower Acceptance Limit	J-	ເບ	
Lower Acceptance Limit \leq %R \leq Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-ds (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane	trans-1,2-Dichloroethene
•	Chloromethane	cis-1,2-Dichloroethene
	Bromomethane	1.1-Dichloroethene
	Chloroethane	
	Carbon disulfide	
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d4 (DMC-6)
Acetone	1.1-Dichloroethane	Trichlorofluoromethane
2-Butanone	Bromochloromethane	1,1,2-Trichloro-1,2,2-trifluoroethane
	Chloroform	Methyl acetate
	Dibromochloromethane	Methylene chloride
	Bromoform	Methyl-tert-butyl ether
		1.1.1-Trichloroethane
		Carbon tetrachloride
		1,2-Dibromoethane
		1,2-Dichloroethane
Benzene-de (DMC-7)	1,2-Dichloropropane-ds	Toluene-ds (DMC-9)
	(DMC-8)	
Benzene	Cyclohexane	Trichloroethene
	Methylcyclohexane	Toluene
	1.2-Dichloropropane	Tetrachloroethene
	Bromodichloromethane	Ethylbenzene
		o-Xylene
		m,p-Xylene
		Styrene
		Isopropylbenzene
trans-1,3-Dichloropropene-da (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d2 (DMC-12)
cis-1,3-Dichloropropene	4-Methyl-2-pentanone	1,1,2,2,-Tetrachloroethane
trans-1.3-Dichloropropene	2-Hexanone	1,2-Dibromo-3-chloropropane
1,1,2-Trichloroethane		
1,2-Dichlorobenzene-d4		
(DMC-13)		
Chlorobenzene		
1,3-Dichlorobenzene		
1.4-Dichlorobenzene		
1.2-Dichlorobenzene		
1,2,4-Trichlorobenzene		
1,2,3-Trichlorobenzene		

All criteria were met _	_X	
Criteria were not met		
and/or see below		

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

1000 1000 1000

M2 and M2D.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

District District District

Sample ID:_ JC33584-2MS	Matrix/Level:	Groundwater
Sample ID:_ JC33572-12MS/-12MSD	Matrix/Level:	Groundwater

SCHOOL STATE

Note: MS/MSD % recoveries and RPD within laboratory control limits.

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met	X_	
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT		
Recoveries	Recoveries(blank_spike)_within_laboratory_control_limits					
					_	
-			<u></u>		_	
					_	
			<u> </u>		_	

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

Sample IDs:

IX.

All criteria were metX Criteria were not met and/or see below
Matrix: Groundwater

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

FIELD/LABORATORY DUPLICATE PRECISION

__JC33384-7/-7_DUP.____

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Liaboratory du target analytes	plicate a	nalyzed with the	nis data package. PR on > 5x the SQL.	D within	required criteria, ≤ 50 % for

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met ___X___

Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
Internal stand	lard area counts wi	thin the require	d criteria for all s	amples.	

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary.
- If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	ion
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R
Area counts \geq 50% but \leq 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
	[opening Continuing Calibration Verificati	ompounds within ±0.06 RRT units of the on (CCV) or mid-point standard from the <u>Yes</u> ? or No?
List compound	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum from	the associated calibration standard (open ust match according to the following criteria:	oratory-generated standard [i.e., the massing CCV or mid-point standard from initial pectrum at a relative intensity greater than
b.	10% must be present in the sample spect. The relative intensities of these ions mus	rum. t agree within ±20% between the standard
		th an abundance of 50% in the standard
C.	lons present at greater than 10% in the	sample mass spectrum, but not present in ated by a reviewer experienced in mass
List compound	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
	a man part and	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

	$\overline{}$	
101	- 1	lCs
ISI		IL.S

Sample ID	Compound	Sample ID	Compound
=========			
1		,	

Action:

- Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	_X_	
Criteria were not met		
and/or see below	_	

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action					
	Detected Associated Compounds	Non-detected Associated Compounds				
% Moisture < 70.0	No qualification					
70.0 < % Moisture < 90.0	J	UJ				
% Moisture > 90.0	J	R				

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

JC33572-12 MS

1.3-butadiene

RF = 0.619

[] = (150373)(50)/(0.619)(240587) = 50.5 ppb Ok

Percent Solids

List samples which have $\geq 70 \%$ solids

B.

and/or see below	-

All criteria were met _X__

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	7	
	The state of the s	
		100

2.

		All criteria were metX Criteria were not met and/or see below
OTHER ISSUES		androi see below
A. System P	erformance	
List samples quali	ified based on the degradation of system p	erformance during simple analysis:
Sample ID	Comments	Actions
_No_degradation_		
Action:		
degraded during	judgment to qualify the data if it is de sample analyses. Inform the Contract La on of system performance which significar	boratory Program COR any action as a
B. Overall As	sessment of Data	
List samples quali	fied based on other issues:	
Sample ID	Comments	Actions
	sues_observed_that_require_qualification r_decission_purposes	
•	ssional judgment to determine if there is ased on the Quality Control (QC) criteria pre	• •

Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform

the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within

the given context. This may be used as part of a formal Data Quality Assessment (DQA).

EXECUTIVE NARRATIVE

SDG No:

JC33572

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

14

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Fourteen (14) samples were analyzed for selected SVOCs following method SW846-8270D and Selected PAHs and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 – Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings:

None None

Minor findings:

1. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet. Results for were qualified as estimated (J or UJ) in affected samples.

No closing calibration verification included in data package. No action taken, professional judgment.

QC samples were not validated.

2. MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet.

No qualification made based on RPD results, professional judgment.

No action taken for analytes not meeting the MS/MSD % recovery control limit; outside control limits due to high level in sample relative to spike amount.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1885

Signature:

Date:

January 24, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33572-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	=	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	=	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	=	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	=	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	_	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	=	U	Yes
Dibenzofuran	5.0	ug/l	1	=	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	=	U	Yes
Hexachlorobenzene	1.0	ug/l	1	=	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	=	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	=	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	0.38	ug/l	1	J	J	Yes
2-Methylnaphthalene	0.38	ug/l	1	J	J	Yes
2-Nitroaniline	5.0	ug/l	1	-	U	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	=	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.050	ug/l	1	=	U	Yes
Benzo(a)pyrene	0.050	ug/l	1	=	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	=	UJ	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	_	U	Yes
Chrysene	0.10	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	UJ	Yes
Naphthalene	0.106	ug/l	1	-	-	Yes
1,4-Dioxane	0.516	ug/l	1	-	-	Yes

Sample ID: JC33572-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.4	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	33.1	ug/l	1	-	-	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	7.5	ug/l	1	-	-	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.2	ug/l	1	_	U	Yes	
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.2	ug/l	1	=	U	Yes	
2,4-Dinitrotoluene	1.1	ug/l	1	_	U	Yes	
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.2	ug/l	1	_	U	Yes	
1,4-Dioxane	37.3	ug/l	1	-	-	Yes	
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes	
Dibenzofuran	5.6	ug/l	1	-	U	Yes	
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes	
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes	
Diethyl phthalate	2.2	ug/l	1	-	U	Yes	
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes	
Fluoranthene	1.1	ug/l	1	-	U	Yes	
Fluorene	1.1	ug/l	1	-	U	Yes	
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes	
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes	
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes	
Hexachloroethane	2.2	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes	
Isophorone	2.2	ug/l	1	-	U	Yes	
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes	
2-Methylnaphthalene	0.55	ug/l	1	J	J	Yes	
2-Nitroaniline	5.6	ug/l	1	-	U	Yes	
3-Nitroaniline	5.6	ug/l	1	-	U	Yes	
4-Nitroaniline	5.6	ug/l	1	-	U	Yes	
Nitrobenzene	2.2	ug/l	1	-	U	Yes	
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes	
Phenanthrene	1.1	ug/l	1	-	U	Yes	
Pyrene	1.1	ug/l	1	-	U	Yes	
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes	
METHOD: 8270D (SIM)							
Benzo(a)anthracene	0.056	ug/l	1	-	U	Yes	
Benzo(a)pyrene	0.056	ug/l	1	_	U	Yes	
Benzo(b)fluoranthene	0.11	ug/l	1	-	UJ	Yes	
Benzo(k)fluoranthene	0.11	ug/l	1	_	U	Yes	
Chrysene	0.11	ug/l	1	-	U	Yes	
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	UJ	Yes	
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	UJ	Yes	
Naphthalene	0.423	ug/l	1	-	-	Yes	

Sample ID: JC33572-3

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.1	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

bis (2-Chloroethoxy) methane	2.0	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.0	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1	-	U	Yes
3-Nitroaniline	5.1	ug/l	1	-	U	Yes
4-Nitroaniline	5.1	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
, , ,		O,				
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.051	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.051	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	-	UJ	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes
Chrysene	0.10	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	UJ	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	0.10	ug/l	1	-	U	Yes

Sample ID: JC33572-4

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.1	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes	
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes	
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes	
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.0	ug/l	1	=	U	Yes	
1,4-Dioxane	13.5	ug/l	1	-	-	Yes	
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes	
Dibenzofuran	5.1	ug/l	1	-	U	Yes	
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes	
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes	
Diethyl phthalate	2.0	ug/l	1	-	U	Yes	
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes	
Fluoranthene	1.0	ug/l	1	_	U	Yes	
Fluorene	1.0	ug/l	1	=	U	Yes	
Hexachlorobenzene	1.0	ug/l	1	_	U	Yes	
Hexachlorobutadiene	1.0	ug/l	1	=	U	Yes	
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes	
Hexachloroethane	2.0	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes	
Isophorone	2.0	ug/l	1	-	U	Yes	
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Nitroaniline	5.1	ug/l	1	-	U	Yes	
3-Nitroaniline	5.1	ug/l	1	-	U	Yes	
4-Nitroaniline	5.1	ug/l	1	-	U	Yes	
Nitrobenzene	2.0	ug/l	1	-	U	Yes	
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes	
Phenanthrene	1.0	ug/l	1	-	U	Yes	
Pyrene	1.0	ug/l	1	-	U	Yes	
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes	
METHOD): 8270D (SIM	1)					
Benzo(a)anthracene	0.051	ug/l	1	=	U	Yes	
Benzo(a)pyrene	0.051	ug/l	1	=	U	Yes	
Benzo(b)fluoranthene	0.10	ug/l	1	_	UJ	Yes	
Benzo(k)fluoranthene	0.10	ug/l	1	_	U	Yes	
Chrysene	0.10	ug/l	1	_	U	Yes	
Dibenzo(a,h)anthracene	0.10	ug/l	1	_	UJ	Yes	
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	_	UJ	Yes	
Naphthalene	0.10	ug/l	1	_	U	Yes	
privilarente	0.10	י וסי	-		Ü		

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.2	ug/l	1	-	-	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes	
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes	
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes	
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes	
1,4-Dioxane	18.8	ug/l	1	-	-	Yes	
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes	
Dibenzofuran	5.0	ug/l	1	-	U	Yes	
Di-n-butyl phthalate	2.0	ug/l	1	=	U	Yes	
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes	
Diethyl phthalate	2.0	ug/l	1	-	U	Yes	
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes	
Fluoranthene	1.0	ug/l	1	=	U	Yes	
Fluorene	1.0	ug/l	1	=	U	Yes	
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes	
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes	
Hexachlorocyclopentadiene	10	ug/l	1	=	U	Yes	
Hexachloroethane	2.0	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes	
Isophorone	2.0	ug/l	1	-	U	Yes	
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Nitroaniline	5.0	ug/l	1	-	U	Yes	
3-Nitroaniline	5.0	ug/l	1	-	U	Yes	
4-Nitroaniline	5.0	ug/l	1	-	U	Yes	
Nitrobenzene	2.0	ug/l	1	-	U	Yes	
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes	
Phenanthrene	1.0	ug/l	1	=	U	Yes	
Pyrene	1.0	ug/l	1	=	U	Yes	
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes	
METHOD	. 0270D (CIN	۸١					
Benzo(a)anthracene	: 8270D (SIM 0.050	•	1		U	Yes	
Benzo(a)pyrene	0.050	ug/l ug/l	1 1	-	U	Yes	
Benzo(b)fluoranthene	0.030	ug/l	1	-	ΟJ	Yes	
Benzo(k)fluoranthene	0.10	_	1	-	U		
Chrysene	0.10	ug/l ug/l	1	-	U	Yes Yes	
Dibenzo(a,h)anthracene	0.10	ug/I ug/l	1	-	ΟΊ	Yes	
Indeno(1,2,3-cd)pyrene	0.10	ug/I ug/l	1	<u>-</u>	O1	Yes	
Naphthalene	0.10	ug/I ug/l	1	<u>-</u>	U	Yes	
ιναριιτιαιείτε	0.10	ug/I	1	-	J	163	

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	=	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	=	U	Yes
2-Nitrophenol	5.3	ug/l	1	=	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.2	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	=	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	=	U	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	=	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	1.7	ug/l	1	J	J	Yes
Chrysene	1.1	ug/l	1	-	U	Yes

bis (2-Chloroethoxy) methane	2.1	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.1	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.1	ug/l	1	=	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	=	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	=	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1	-	U	Yes
4-Nitroaniline	5.3	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.053	ug/l	1	-	UJ	Yes
Benzo(a)pyrene	0.053	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	=	UJ	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.11	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	=	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	=	U	Yes
2-Nitrophenol	5.0	ug/l	1	=	U	Yes
4-Nitrophenol	10	ug/l	1	=	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	=	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	=	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	=	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes	
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes	
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes	
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes	
1,4-Dioxane	19.9	ug/l	1	-	=	Yes	
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes	
Dibenzofuran	5.0	ug/l	1	-	U	Yes	
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes	
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes	
Diethyl phthalate	2.0	ug/l	1	-	U	Yes	
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes	
Fluoranthene	1.0	ug/l	1	-	U	Yes	
Fluorene	1.0	ug/l	1	-	U	Yes	
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes	
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes	
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes	
Hexachloroethane	2.0	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes	
Isophorone	2.0	ug/l	1	-	U	Yes	
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Nitroaniline	5.0	ug/l	1	-	U	Yes	
3-Nitroaniline	5.0	ug/l	1	-	U	Yes	
4-Nitroaniline	5.0	ug/l	1	-	U	Yes	
Nitrobenzene	2.0	ug/l	1	-	U	Yes	
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes	
Phenanthrene	1.0	ug/l	1	-	U	Yes	
Pyrene	1.0	ug/l	1	-	U	Yes	
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes	
METHOL): 8270D (SIM	1)					
Benzo(a)anthracene	0.050	ug/l	1	-	UJ	Yes	
Benzo(a)pyrene	0.050	ug/l	1	-	U	Yes	
Benzo(b)fluoranthene	0.10	ug/l	1	-	U	Yes	
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes	
Chrysene	0.10	ug/l	1	-	U	Yes	
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	UJ	Yes	
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	UJ	Yes	
Naphthalene	0.10	ug/l	1	_	U	Yes	

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.2	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes

bis (2-Chloroethoxy) methane	2.1	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.1	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.1	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1	-	U	Yes
4-Nitroaniline	5.3	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
, , ,		Ç,				
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.053	ug/l	1	-	UJ	Yes
Benzo(a)pyrene	0.053	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	UJ	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	110	ug/l	5	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes	
bis (2-Chloroethyl) ether	2.0	ug/l	1	-	U	Yes	
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes	
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes	
1,4-Dioxane	25.0	ug/l	1	-	-	Yes	
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes	
Dibenzofuran	5.0	ug/l	1	-	U	Yes	
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes	
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes	
Diethyl phthalate	2.0	ug/l	1	-	U	Yes	
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes	
bis (2-Ethylhexyl) phthalate	2.0	ug/l	1	-	U	Yes	
Fluoranthene	1.0	ug/l	1	-	U	Yes	
Fluorene	1.0	ug/l	1	-	U	Yes	
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes	
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes	
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes	
Hexachloroethane	2.0	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes	
Isophorone	2.0	ug/l	1	-	U	Yes	
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Nitroaniline	5.0	ug/l	1	-	U	Yes	
3-Nitroaniline	5.0	ug/l	1	-	U	Yes	
4-Nitroaniline	5.0	ug/l	1	-	U	Yes	
Nitrobenzene	2.0	ug/l	1	-	U	Yes	
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes	
Phenanthrene	1.0	ug/l	1	-	U	Yes	
Pyrene	1.0	ug/l	1	-	U	Yes	
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes	
METHOD	: 8270D (SIM	1)					
Benzo(a)anthracene	0.050	ug/l	1	-	UJ	Yes	
Benzo(a)pyrene	0.500	ug/l	1	-	U	Yes	
Benzo(b)fluoranthene	0.10	ug/l	1	-	U	Yes	
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes	
Chrysene	0.10	ug/l	1	-	U	Yes	
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	UJ	Yes	
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	UJ	Yes	
Naphthalene	0.10	ug/l	1	-	U	Yes	

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.4	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.4	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.4	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	=	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.4	ug/l	1	=	U	Yes
3-Nitroaniline	5.4	ug/l	1	-	U	Yes
4-Nitroaniline	5.4	ug/l	1	=	U	Yes
Nitrobenzene	2.2	ug/l	1	=	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.4	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
MFTHOD:	8270D (SIM	4)				
Benzo(a)anthracene	0.054	ug/l	1	_	UJ	Yes
Benzo(a)pyrene	0.054	ug/l	1	=	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	=	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	=	U	Yes
Chrysene	0.11	ug/l	1	=	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	=	UJ	Yes
Naphthalene	0.11	ug/l	1	=	U	Yes
1,4-Dioxane	0.11	ug/l	1	=	U	Yes
=, - =	0.11	~· O/ ·	-		•	. 03

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016

Matrix: Groundwater

Analyta Nama		Lloita	Dilution Factor	Lab Flag	Validation	Danartahla
Analyte Name	Result 5.0		Dilution Factor	Lab Flag	U	Yes
2-Chlorophenol		ug/l	1 1	-		
4-Chloro-3-methyl phenol	5.0	ug/l		-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	=	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	=	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	=	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	=	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	=	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	=	U	Yes
Isophorone	2.0	ug/l	1	=	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	=	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	=	U	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.050	ug/l	1	_	UJ	Yes
Benzo(a)pyrene	0.500	ug/l	1	_	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	_	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	_	U	Yes
Chrysene	0.10	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	_	UJ	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	_	UJ O3	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	0.290	ug/l	1	-	-	Yes
_,	3.230	~·0/ '	-			

Sample location: BMSMC Building 5 Area

Sampling date: 12/12/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	=	U	Yes
2-Methylphenol	2.2	ug/l	1	=	U	Yes
3&4-Methylphenol	2.2	ug/l	1	=	U	Yes
2-Nitrophenol	5.6	ug/l	1	=	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.4	ug/l	1	=	U	Yes
Phenol	2.2	ug/l	1	=	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	=	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	=	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	=	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	=	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	=	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	51.6	ug/l	1	-	-	Yes
Dibenzo (a, h) anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)pyrene	0.056	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	51.6	ug/l	1	-	_	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/12/2016 Matrix: Groundwater

5,	Yes
4-Chloro-3-methyl phenol 36.1 ug/l 1	Yes
2,4-Dichlorophenol 37.5 ug/l 1	Yes
2,4-Dimethylphenol 40.1 ug/l 1	Yes
2,4-Dinitrophenol 73 ug/l 1	Yes
4,6-Dinitro-o-cresol 44.4 ug/l 1	Yes
2-Methylphenol 32.3 ug/l 1	Yes
3&4-Methylphenol 32.6 ug/l 1	Yes
2-Nitrophenol 36.5 ug/l 1	Yes
4-Nitrophenol 32.2 ug/l 1	Yes
Pentachlorophenol 32.6 ug/l 1	Yes
Phenol 17.0 ug/l 1	Yes
2,3,4,6-Tetrachlorophenol 39.0 ug/l 1	Yes
2,4,5-Trichlorophenol 42.4 ug/l 1	Yes
2,4,6-Trichlorophenol 41.3 ug/l 1	Yes
Acenaphthene 42.1 ug/l 1	Yes
Acenaphthylene 40.9 ug/l 1	Yes
Acetophenone 41.0 ug/l 1	Yes
Anthracene 43.3 ug/l 1	Yes
Atrazine 47.8 ug/l 1	Yes
Benzaldehyde 34.7 ug/l 1	Yes
Benzo(a)anthracene 42.0 ug/l 1	Yes
Benzo(a)pyrene 41.0 ug/l 1	Yes
Benzo(b)fluoranthene 42.9 ug/l 1	Yes
Benzo(g,h,i)perylene 42.2 ug/l 1	Yes
Benzo(k)fluoranthene 44.8 ug/l 1	Yes
4-Bromophenyl phenyl ether 47.8 ug/l 1	Yes
Butyl benzyl phthalate 43.4 ug/l 1	Yes
1,1'-Biphenyl 43.5 ug/l 1	Yes
2-Chloronaphthalene 42.6 ug/l 1	Yes
4-Chloroaniline 31.6 ug/l 1	Yes
Carbazole 45.7 ug/l 1	Yes
Caprolactam 7.6 ug/l 1	Yes
Chrysene 42.1 ug/l 1	Yes
bis(2-Chloroethoxy)methane 40.6 ug/l 1	Yes
bis(2-Chloroethyl)ether 41.6 ug/l 1	Yes

bis(2-Chloroisopropyl)ether	36.6	ug/l	1	-	=	Yes
4-Chlorophenyl phenyl ether	43.3	ug/l	1	-	-	Yes
2,4-Dinitrotoluene	44.6	ug/l	1	-	_	Yes
2,6-Dinitrotoluene	43.5	ug/l	1	-	-	Yes
3,3'-Dichlorobenzidine	83.0	ug/l	1	-	-	Yes
1.4-Dioxane	72.4	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	43.6	ug/l	1	-	-	Yes
Dibenzofuran	43.2	ug/l	1	-	-	Yes
Di-n-butyl phthalate	44.2	ug/l	1	-	-	Yes
Di-n-octyl phthalate	46.6	ug/l	1	-	-	Yes
Diethyl phthalate	43.8	ug/l	1	-	-	Yes
Dimethyl phthalate	43.0	ug/l	1	=	=	Yes
bis(2-Ethylhexyl)phthalate	47.6	ug/l	1	-	-	Yes
Fluoranthene	45.2	ug/l	1	-	-	Yes
Fluorene	42.9	ug/l	1	=	=	Yes
Hexachlorobenzene	47.2	ug/l	1	=	=	Yes
Hexachlorobutadiene	29.9	ug/l	1	=	=	Yes
Hexachlorocyclopentadiene	48.6	ug/l	1	=	=	Yes
Hexachloroethane	32.8	ug/l	1	=	=	Yes
Indeno(1,2,3-cd)pyrene	42.1	ug/l	1	=	=	Yes
Isophorone	35.7	ug/l	1	-	-	Yes
1-Methylnaphthalene	35.2	ug/l	1	-	-	Yes
2-Methylnaphthalene	35.9	ug/l	1	-	-	Yes
2-Nitroaniline	43.2	ug/l	1	-	-	Yes
3-Nitroaniline	35.8	ug/l	1	-	-	Yes
4-Nitroaniline	37.9	ug/l	1	-	-	Yes
Nitrobenzene	35.1	ug/l	1	-	-	Yes
N-Nitroso-di-n-propylamine	38.3	ug/l	1	-	-	Yes
Nitrosodiphenylamine	42.7	ug/l	1	-	-	Yes
Phenanthrene	43.9	ug/l	1	-	-	Yes
Pyrene	44.0	ug/l	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	42.0	ug/l	1	=	-	Yes
	: 8270D (SIM	•	_			
Benzo(a)anthracene	0.800	ug/l	1	-	-	Yes
Benzo(a)pyrene	0.640	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	0.723	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	0.596	ug/l	1	-	-	Yes
Chrysene	0.763	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	0.300	ug/l	1	=	=	Yes
Indeno(1,2,3-cd)pyrene	0.371	ug/l	1	=	=	Yes
2-Methylnaphthalene	0.916	ug/l	1	=	=	Yes
Naphthalene	0.879	ug/l	1	-	-	Yes
1,4-Dioxane	62.2	ug/l	1	-	-	Yes

Sample ID: JC33572-12MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12/12/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	36.6	ug/l	1	-	-	Yes
4-Chloro-3-methyl phenol	40.8	ug/l	1	-	-	Yes
2,4-Dichlorophenol	40.1	ug/l	1	-	-	Yes
2,4-Dimethylphenol	45.4	ug/l	1	-	-	Yes
2,4-Dinitrophenol	82	ug/l	1	-	-	Yes
4,6-Dinitro-o-cresol	47.8	ug/l	1	-	-	Yes
2-Methylphenol	34.8	ug/l	1	-	-	Yes
3&4-Methylphenol	37.7	ug/l	1	-	-	Yes
2-Nitrophenol	37.0	ug/l	1	-	-	Yes
4-Nitrophenol	38.0	ug/l	1	-	-	Yes
Pentachlorophenol	32.7	ug/l	1	-	-	Yes
Phenol	18.8	ug/l	1	-	-	Yes
2,3,4,6-Tetrachlorophenol	40.9	ug/l	1	-	-	Yes
2,4,5-Trichlorophenol	45.5	ug/l	1	-	-	Yes
2,4,6-Trichlorophenol	46.7	ug/l	1	-	-	Yes
Acenaphthene	47.7	ug/l	1	-	-	Yes
Acenaphthylene	45.1	ug/l	1	-	-	Yes
Acetophenone	40.4	ug/l	1	-	-	Yes
Anthracene	46.5	ug/l	1	-	-	Yes
Atrazine	49.2	ug/l	1	-	-	Yes
Benzaldehyde	34.8	ug/l	1	-	-	Yes
Benzo(a)anthracene	47.2	ug/l	1	-	-	Yes
Benzo(a)pyrene	45.7	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	47.5	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	45.6	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	48.5	ug/l	1	-	-	Yes
4-Bromophenyl phenyl ether	51.5	ug/l	1	-	-	Yes
Butyl benzyl phthalate	49.2	ug/l	1	-	-	Yes
1,1'-Biphenyl	47.4	ug/l	1	-	-	Yes
2-Chloronaphthalene	46.8	ug/l	1	-	-	Yes
4-Chloroaniline	32.3	ug/l	1	-	-	Yes
Carbazole	48.2	ug/l	1	-	-	Yes
Caprolactam	12.7	ug/l	1	-	-	Yes
Chrysene	46.3	ug/l	1	-	-	Yes
bis(2-Chloroethoxy)methane	42.1	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	41.6	ug/l	1	-	-	Yes

bis(2-Chloroisopropyl)ether	36.1	ug/l	1	_	_	Yes
4-Chlorophenyl phenyl ether	48.6	ug/l	1	-	-	Yes
2,4-Dinitrotoluene	49.4	ug/l	1	=	=	Yes
2,6-Dinitrotoluene	50.8	ug/l	1	-	_	Yes
3,3'-Dichlorobenzidine	92.3	ug/l	1	-	-	Yes
1,4-Dioxane	72.10	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	47.6	ug/l	1	-	-	Yes
Dibenzofuran	47.3	ug/l	1	-	-	Yes
Di-n-butyl phthalate	49.5	ug/l	1	-	-	Yes
Di-n-octyl phthalate	50.5	ug/l	1	-	-	Yes
Diethyl phthalate	49.2	ug/l	1	-	-	Yes
Dimethyl phthalate	48.4	ug/l	1	-	-	Yes
bis(2-Ethylhexyl)phthalate	50.2	ug/l	1	-	-	Yes
Fluoranthene	49.1	ug/l	1	-	-	Yes
Fluorene	48.7	ug/l	1	-	-	Yes
Hexachlorobenzene	50.5	ug/l	1	-	-	Yes
Hexachlorobutadiene	30.5	ug/l	1	-	-	Yes
Hexachlorocyclopentadiene	58	ug/l	1	=	=	Yes
Hexachloroethane	35.7	ug/l	1	=	=	Yes
Indeno(1,2,3-cd)pyrene	45.8	ug/l	1	=	=	Yes
Isophorone	37.2	ug/l	1	-	-	Yes
1-Methylnaphthalene	36.8	ug/l	1	-	-	Yes
2-Methylnaphthalene	37.0	ug/l	1	-	-	Yes
2-Nitroaniline	47.4	ug/l	1	-	-	Yes
3-Nitroaniline	39.3	ug/l	1	-	-	Yes
4-Nitroaniline	42.2	ug/l	1	-	-	Yes
Nitrobenzene	36.6	ug/l	1	-	-	Yes
N-Nitroso-di-n-propylamine	38.4	ug/l	1	-	-	Yes
Nitrosodiphenylamine	46.0	ug/l	1	-	-	Yes
Phenanthrene	48.5	ug/l	1	-	-	Yes
Pyrene	49.2	ug/l	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	46.7	ug/l	1	-	-	Yes
METHOD	: 8270D (SIM	1)				
Benzo(a)anthracene	0.789	ug/l	1	=	=	Yes
Benzo(a)pyrene	0.673	ug/l	1	=	=	Yes
Benzo(b)fluoranthene	0.719	ug/l	1	=	=	Yes
Benzo(k)fluoranthene	0.708	ug/l	1	=	=	Yes
Chrysene	0.816	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	0.409	ug/l	1	-	-	Yes
Indeno(1,2,3-cd)pyrene	0.460	ug/l	1	=	-	Yes
2-Methylnaphthalene	0.887	ug/l	1	-	-	Yes
Naphthalene	0.864	ug/l	1	-	-	Yes
1,4-Dioxane	66.7	ug/l	1	-	-	Yes

D	roject Number:_JC33572 eate:December_8-12,_2016 chipping Date:December_12,_2016
E	PA Region: 2
REVIEW OF SEMIVOLATILE OR	RGANIC PACKAGE
The following guidelines for evaluating volatile organization actions. This document will assist the review make more informed decision and in better serving the results were assessed according to USEPA data following order of precedence: EPA Hazardous Wa 2015 –Revision 0. Semivolatile Data Validation. The QC on the data review worksheets are from the primary noted.	iewer in using professional judgment to he needs of the data users. The sample validation guidance documents in the iste Support Section, SOP HW-35A, July criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance data included:	data package received has been summarized. The data review for SVOCs
Lab. Project/SDG No.:JC33572 No. of Samples:14_SIM/14_SCAN	
Trip blank No.:	
X Holding TimesX GC/MS TuningX Internal Standard PerformanceX Blanks	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
_Overall Comments:_SVOCs_TCL_special_list_analyzed_b _and_1,4-Dioxane_analyzed_by_method_SW846-8270D_(
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Date: January 23, 2017	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CON	<u>TACTED</u>	DATE RECEIVED	
			-	
		122		
	18.20			
				
	-			
	-		9	
	1		5392	
			5,000	
		7)		
		0		
		-		
11.2			4.11	
			·	
			1	

All criteria were met _	_X_	_
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	pН	ACTION
All samples extrappropriate.	acted and ana	lyzed within method recomm	nende	d holding time. Sample preservation

Cooler temperature	(Criteria: 4 ± 2 °C): _	5.6ºC	
--------------------	-------------------------	-------	--

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

		ing Time Actions for Semive		tion
Matrix	Preserved	Criteria 	Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use profession	onal judgment
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qualification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	บม
	Yes/No	Grossly Exceeded	J	UJ or R
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgme	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification	
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ
	Yes/No	Grossly Exceeded	J	UJ or R

All criteria were metX
Criteria were not met see below

GC/MS TUNING

The assessment of the tuning results is to determine if t	he sample instrumentation	is within the	standard
tuning QC limits			

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected
		- 100 Maria	

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were met _	_X	
Criteria were not met		
and/or see below	-	

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

	11/21/16_(SIM) GCMS4PAqueous/low
Date of initial calibration:_12/14/16_(SIM) Instrument ID numbers:GCMS4M Matrix/Level:Aqueous/low	GCMSF
Date of initial calibration:11/16/16_(SCAN) Instrument ID numbers:GCMSZ Matrix/Level:Aqueous/low	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial a	Initial and initial calibration verification meets the method and guidance validation document performance criteria.				
			репопт	iance chiena.	

Note: Instruments GCMS3M (SIM) and GCMS6P (SCAN) were also employed for running QC samples for this data packages. QC samples not validated.

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

0.4.	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
$RSD \le Maximum RSD$ in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	± 20.0	±25.0
Bis(2-chloroethyl)ether	0.100	20.0	± 20.0	±25.0
2-Chlorophenol	0.200	20.0	±20.0	±25.0
2-Methylphenol	0.010	20.0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	±20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	± 50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	±20.0	±25.0
Nitrobenzene	0.090	20.0	±20.0	±25.0
Isophorone	0.100	20.0	± 20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	± 20.0	± 25.0
2,4-Dichlorophenol	0.060	20.0	± 20.0	±25.0
Naphthalene	0.200	20.0	± 20.0	± 25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	±25.0
Caprolactam	0.010	40.0	± 30.0	±50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	± 20.0	±25.0
Hexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	± 20.0	±25.0
I,1'-Biphenyl	0.200	20.0	± 20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	± 20.0	± 25.0
2-Nitroaniline	0.060	20.0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	± 25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	± 25.0
Acenaphthylene	0.400	20.0	±20.0	±25.0
3-Nitroaniline	0.010	20.0	± 25.0	± 50.0
Acenaphthene	0.200	20.0	± 20.0	± 25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	± 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	± 20.0	± 25.0
Diethylphthalate	0.300	20.0	± 20.0	± 25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	± 25.0
4-Chlorophenyl-phenylether	0.100	20.0	± 20.0	± 25.0
Fluorene	0.200	20.0	± 20.0	± 25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	± 30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	± 25.0
N-Nitrosodiphenylamine	0.100	20.0	± 20.0	± 25.0
Hexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	±20.0	± 25.0
Anthracene	0.200	20.0	±20.0	± 25.0
Carbazole	0.050	20.0	± 20.0	±25.0
Di-n-butylphthalate	0.500	20.0	± 20.0	± 25.0
Fluoranthene	0.100	20.0	± 20.0	± 25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	± 25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	±20.0	± 25.0
Chrysene	0.200	20.0	±20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	±20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	± 25.0	±25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	± 25.0
Acenaphthylene	0.900	20.0	± 20.0	±25.0
Acenaphthene	0.500	20.0	± 20.0	±25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	± 25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	± 25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	± 25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D	
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0	
Phenol-d ₅	0.010	20.0	± 25.0	±25.0	
Bis-(2-chloroethyl)ether-ds	0.100	20.0	±20.0	±25.0	
2-Chlorophenol-d ₄	0.200	20.0	±20.0	±25.0	
4-Methylphenol-d ₈	0.010	20.0	±20.0	±25.0	
4-Chloroaniline-d ₄	0.010	40.0	±40.0	± 50.0	
Nitrobenzene-d ₅	0.050	20.0	±20.0	±25.0	
2-Nitrophenol-d ₄	0.050	20.0	±20.0	± 25.0	
2,4-Dichlorophenol-d ₃	0.060	20.0	±20.0	± 25.0	
Dimethylphthalate-d ₆	0.300	20.0	±20.0	± 25.0	
Acenaphthylene-d ₈	0.400	20.0	±20.0	± 25.0	
4-Nitrophenol-d ₄	0.010	40.0	± 40.0	± 50.0	
Fluorene-d ₁₀	0.100	20.0	± 20.0	± 25.0	
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	±30.0	± 50.0	
Anthracene-d ₁₀	0.300	20.0	± 20.0	±25.0	
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0	
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	±50.0	
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	± 50.0	
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	±20.0	±25.0	

¹ If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met _		_
Criteria were not met		
and/or see below	_X	_

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:10/18/16_(SIM)	11/21/16_(SIM)
Date of initial calibration verification (ICV):10/19/16	11/21-22/16
Date of continuing calibration verification (CCV):_12/16/16	12/16/16;_12/21/16
Date of closing CCV:	
Instrument ID numbers:GCMS3P	GCMS4P
Matrix/Level:Aqueous/low	
Date of initial calibration:12/14/16_(SIM)	11/16/16_(Scan)
Date of initial calibration verification (ICV):_12/15/16;_12/19/16	511/16-17/16
Date of continuing calibration verification (CCV):_12/19/16	12/15/16
Date of closing CCV:	
Date of closing CCV:	GCMSZ
Matrix/Level:Aqueous/low	Aqueous/low
Date of initial calibration:12/09/16;_12/12/16_(Scan)	
Date of initial calibration verification (ICV):_12/12-13/16	
Date of continuing calibration verification (CCV):_12/19/16;_12	2/22/16
Date of closing CCV:	
Instrument ID numbers:GCMSF	
Matrix/Level:Aqueous/low	

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> ,	COMPOUND	SAMPLES AFFECTED	
GCMS3P		<u> </u>			
12/16/16	CC2579-1.0	-31.7	√ Benzo(a)anthracene	JC33572-6 to -11	
		-25.4	Indeno(1,2,3-cd)pyrene		
		-21.9	Dibenzo(a,h)anthracene		
GCMS4P					
12/16/16	cc1064-1.0	-25.8	Benzo(b)fluoranthene	JC33572-1 to -5	
		-20.3	Indeno(1,2,3-cd)pyrene		
		-21.6	/ Dibenzo(a,h)anthracene		
GCMSF					
12/19/16	CC6870-50	22.1	4-chloroaniline*	JC33572-6 to -12	
		21.0	4-nitroaniline*		
12/22/16	cc6870-25	-20.1	4-nitrophenol*	JC33572-8	
		-26.8	di-n-octylphthalate*		
GCMSZ					
12/15/16	cc5791-50	23.7	Pentachlorophenol*	JC33572-1 to -5	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document. Results qualified as estimated (J or UJ) in affected samples.

* % difference outside was method performance criteria but within the guidance document performance criteria. No action taken.

No action taken for QC samples.

No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

0-11-5-01562	Salarah San Stadan SSV	Ac	tion
Criteria for Opening CCV	Criteria for Closing CCV	Detect	Non-detect
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	ບນ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification

All criteria were met		_
Criteria were not met		
and/or see below	_X_	_

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	alytes_detected_i	n_method_bla	nks	
Note:				
Field/Equipme	<u>nt</u> /Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	alytes_detected_i e_cases_describe			zed_with_this_data_package
_12/19/16	JC33572-6	Aq./low	Caprolactam	1.7_ug/l

Note: No action taken, concentration below the reporting limit. Caprolactam not detected in the corresponding sample batch.

All criteria were met _X	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
Method,		< CRQL	Report at CRQL and qualify as non-detect (U)
	≥CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
W 25.0					

All criteria were met _	_X_	_
Criteria were not met		
and/or see below	_	

SURROGATE SPIKE RECOVERIES – DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

	Action		
Criteria	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J- R		
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	Je	υJ	
Lower Acceptance limit ≤%R ≤ Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

List the percent recovering Matrix:Groundwater.	ies (%Rs) which do not meet the criteria for DMC	s (surrogate) recovery.		
SAMPLE ID	SURROGATE COMPOUND	ACTION		
_DMCs_meet_the_required_criteria_in_all_samples_analyzedNondeuterated_surrogatesadded_to_the_samples_and_were_within_laboratory_recovery_limits				

Note:

⁽a) Outside control limits due to matrix interference.

⁽b) Outside in house control limits biased low. The results confirmed by re-extraction outside the holding time.

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-ds (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-d ₈ (DMC-5)	4-Chloroaniline-d4 (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
•	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d ₂ (DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d4 (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met	
Criteria were not met	
and/or see below	_X

Method: SW846 8270D

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:	_JC33572-1	Matrix/Level:Groundwater
Sample ID:	JC33175-1_(SIM)	Matrix/Level:Groundwater
Sample ID:	JC33572-12	Matrix/Level:Groundwater
Sample ID:	JC33572-6_(SIM)	Matrix/Level:Groundwater

The QC reported here applies to the following samples:	
JC33572-1, JC33572-2, JC33572-3, JC33572-4, JC33572-	5

.,		,							
	JC33572-1	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
2-Methylphenol 3&4-	ND	100	56.9	57	100	69.4	69	20* a	47-112/18
	MD	400	E7 0	E7	100	70.2	70	20* a	44-113/19
Methylphenol	ND	100	57.2	57	100	10.2	70		• • • • • • •
2-Nitrophenol	ND	100	64.9	65	100	81.6	82	23* a	45-118/20
Caprolactam bis(2-Chloro-	ND	100	27.0	27	100	39.5	40	38* a	10-106/34
isopropyl)ether	ND	100	52.0	52	100	67.8	68	26* a	41-117/25

⁽a) Analytical precision exceeds in-house control limits.

Note: No qualification made based on RPD results, professional judgment.

^{* -} outside control limits

The QC reported here applies to the following samples:

Method: SW846 8270D

JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

	JC3357	72-12	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
Caprolactam	ND		52.6	7.6	14	55.6	12.7	23	50* a	10-106/34

(a) Analytical precision exceeds in-house control limits.

Note: No qualification made based on RPD results, professional judgment.

The QC reported here applies to the following samples: JC33572-1, JC33572-2, JC33572-3, JC33572-4, JC33572-5

Method: SW846 8270D BY SIM

	JC335	72-2	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
1,4-Dioxane	45.2	Ε	2.22	86.7	1868* a	2.22	79.0	1521* a	a 9	20-160/30

(a) Outside control limits due to high level in sample relative to spike amount.

Note: No action taken, outside control limits due to high level in sample relative to spike amount.

The QC reported here applies to the following samples: Method: SW846 8270D BY SIM JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

	JC3357	72-12	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
1.4-Dioxane	51.6		1	62.2	190* a	1	66.7	640* a	7	20-160/30

⁽a) Outside control limits due to high level in sample relative to spike amount.

Note: No action taken, outside control limits due to high level in sample relative to spike amount.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{* -} outside control limits

^{* -} outside control limits

^{* -} outside control limits

All criteria were metX
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE	SAMPLE ID	IS OUT	IS AREA	A ACCEPTABLE RANGE	ACTION
Internal area	meets the requ	uired criteria foi	batch samples con	responding to this data	a package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note:

Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Ac	tion
Criteria	Detect	Non-detect
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ
$50\% \le \text{Area response} \le 200\%$ of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
Is the Relativ RRT [openir calibration].	re Retention Times (RRTs) of reported compouning Continuing Calibration Verification (CCV)	nds within ±0.06 RRT units of the standard or mid-point standard from the initial Yes? or No?
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum fro calibration)] r a. b.	a of the sample compound and a current labor the associated calibration standard (openin must match according to the following criteria: All ions present in the standard mass spectromust be present in the sample spectrum. The relative intensities of these ions must agree sample spectra (e.g., for an ion with an abuthe corresponding sample ion abundance mulons present at greater than 10% in the sam standard spectrum, must be evaluated by interpretation.	g CCV or mid-point standard from initial um at a relative intensity greater than 10% ree within ±20% between the standard and indance of 50% in the standard spectrum, just be between 30-70%). The ple mass spectrum, but not present in the
•	Compounds	Actions
Sample ID	:=====================================	701013
_ldentified_c	ompounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

Sample ID	Compound	Sample ID	Compound

Action:

List TICs

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Cuitouio	Ac	Action				
Criteria	Detects	Non-detects				
%Solids < 10.0%	Use professional judgment	Use professional judgment				
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment				
%Solids > 30.0%	No qualification	No qualification				

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JC33572-8	5 x	1,4-dioxane outside calibration range
	1000	
1820000		
	1	

				Criter	teria were met ia were not met r see belowN/A	
FIELD DUPLICATE	PRECIS	ION				
Sample IDs	:			Mat	rix:	
analyses measure laboratory duplicate will have a greater field duplicate samp The project QAPP s Suggested criteria:	both field s which variance les. hould be if large	d and lab precisionly laboratory per than water mate reviewed for pro	d analyzed as an incion; therefore, the respection and the difficulties due to difficulties elect-specific information observed, confirm idea < 5 SQL, the RPD criteria.	ults may hexpected associated associated no.	nave more variabil that soil duplicate ed with collecting i of the samples a	ity than results dentica
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
	ision. R	PD within the req	rt of this data package uired guidance docum			

All criteria were met _	_X	_
Criteria were not met		
and/or see below	0.0	

OTHER ISSUES

A.	System Perfe	ormance	
List s	amples qualified	d based on the degradation of system	performance during simple analysis:
	ole ID =======	Comments	Actions
Actio	n:		
durin	g sample analy		nined that system performance has degraded y Program COR any action as a result of cted the data.
B.	Overall Asses	ssment of Data	
List s	amples qualified	d based on other issues:	
Samp	ole ID	Comments	Actions
			_dataResults_are_valid_and_can_be_used n_below
Note	 :		
Actio	n:		

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC33572

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

1/

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Fourteen (14) samples were analyzed for the TCL pesticides list following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification not included in data package. No action taken, professional judgment.
- 2. Surrogate recoveries within laboratory control limits except for the cases described in the Data Review Worklist. No action taken, professional judgment.
- **3.** MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits except for the cases described in the Data Review Worklist.

Results for 4,4'-DDT and Methoxychlor qualified as estimated (J or UJ) in sample JC33572-12.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

January 24, 2017

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33572-1

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	•	U	Yes
beta-BHC	0.011	ug/l	1	-	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4'-DDT	0.011	ug/l	1		U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-l	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	-	U	Yes
Methoxychlor	0.022	ug/l	1	-	U	Yes
Toxaphene	0.27	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	•	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	0 U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1		U	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	บ	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-I	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	.70	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	7.	U	Yes
Methoxychlor	0.022	ug/l	1	-	U	Yes
Toxaphene	0.28	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	•	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	Ų	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-l	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/i	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	•	U	Yes
Methoxychlor	0.022	ug/l	1	-	U	Yes
Toxaphene	0.28	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16
Matrix: Groundwater

1012111	05. 00015					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4¹-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1		U	Yes
Endosulfan-I	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	•	U	Yes
Heptachlor epoxide	0.011	ug/l	1	-	U	Yes
Methoxychlor	0.021	ug/l	1	-	U	Yes
Toxaphene	0.27	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lah Elag	Validation	Reportable
Aldrin	0.010	ug/l	1	Labilag	U	Yes
		_	1	_	U	
alpha-BHC	0.010	ug/l	_	-	•	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1		U	Yes
Endosulfan-l	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	•	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	2	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1		U	Yes
Endrin aldehyde	0.011	ug/l	1	12	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-I	0.011	ug/l	1	~	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	4	U	Yes
Heptachlor epoxide	0.011	ug/l	1	77	U	Yes
Methoxychlor	0.022	ug/l	1	12	U	Yes
Toxaphene	0.27	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	+	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1		U	Yes
Endosulfan-l	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16
Matrix: Groundwater

***************************************	35. 00015					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	Ų	Yes
delta-BHC	0.011	ug/l	1	•	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	•	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	Ų	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-I	0.011	ug/l	1	-	Ų	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	-	U	Yes
Methoxychlor	0.022	ug/l	1	-	U	Yes
Toxaphene	0.27	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16

Matrix: AQ - Field Blank Water

****	.00. 000					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	Ų	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1		U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1		Ų	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Dec-16
Matrix: Groundwater

WETHOL	. 00010					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	•	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	Ų	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	7	U	Yes
Endrin ketone	0.010	ug/l	1	241	U	Yes
Endosulfan-l	0.010	ug/l	1	7.	U	Yes
Endosulfan-II	0.010	ug/l	1	•	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12-Dec-16
Matrix: Groundwater

Analyte Name	Result	Unite	Dilution Factor	Lah Elag	Validation	Reportable
•				ran Hag		•
Aldrin	0.010	ug/l	1	-	υ	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	IJ	Yes
4,4'-DDD	0.010	ug/l	1	•	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	UJ	Yes
Endrin	0.010	ug/l	1	-	Ų	Yes
Endosulfan sulfate	0.010	ug/l	1	170	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	.70	U	Yes
Endosulfan-I	0.010	ug/l	1		U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	UJ √	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.52	ug/l	1	-	-	Yes
alpha-BHC	0.58	ug/l	1	-	-	Yes
beta-BHC	0.61	ug/l	1	-	-	Yes
delta-BHC	0.62	ug/l	1	-	-	Yes
gamma-BHC (Lindane)	0.57	ug/l	1	-	-	Yes
alpha-Chlordane	0.62	ug/l	1	-	-	Yes
gamma-Chlordane	0.62	ug/l	1	-	*	Yes
Dieldrin	0.61	ug/l	1	-	-	Yes
4,4'-DDD	0.67	ug/l	1	-	-	Yes
4,4'-DDE	0.58	ug/l	1	-	-	Yes
4,4'-DDT	0.21	ug/l	1	•	-	Yes
Endrin	0.61	ug/l	1	-	-	Yes
Endosulfan sulfate	0.58	ug/l	1	7.0		Yes
Endrin aldehyde	0.62	ug/l	1	-	-	Yes
Endrin ketone	0.50	ug/l	1		-	Yes
Endosulfan-I	0.60	ug/l	1	-		Yes
Endosulfan-II	0.57	ug/l	1	-	-	Yes
Heptachlor	0.49	ug/l	1	21		Yes
Heptachlor epoxide	0.63	ug/l	1	-	-	Yes
Methoxychlor	0.25	ug/l	1	21	1.2	Yes
Toxaphene	ND	ug/l	1	5	-	Yes

Sample ID: JC33572-12MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12-Dec-16
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.51	ug/l	1	•	-	Yes
alpha-BHC	0.58	ug/l	1	-	-	Yes
beta-BHC	0.62	ug/l	1	-	-	Yes
delta-BHC	0.65	ug/l	1	-	-	Yes
gamma-BHC (Lindane)	0.56	ug/l	1	-	•	Yes
alpha-Chlordane	0.62	ug/l	1	-	-	Yes
gamma-Chlordane	0.62	ug/l	1	-	-	Yes
Dieldrin	0.61	ug/l	1	-	-	Yes
4,4'-DDD	0.71	ug/l	1	-	-	Yes
4,4'-DDE	0.59	ug/l	1	-	-	Yes
4,4'-DDT	0.095	ug/l	1	-	•	Yes
Endrin	0.60	ug/l	1	-	-	Yes
Endosulfan sulfate	0.60	ug/l	1	-	-	Yes
Endrin aldehyde	0.64	ug/l	1	-	-	Yes
Endrin ketone	0.45	ug/l	1	5.	1.50	Yes
Endosulfan-I	0.61	ug/l	1	-	-	Yes
Endosulfan-II	0.60	ug/l	1	•	-	Yes
Heptachlor	0.44	ug/l	1	21	-	Yes
Heptachlor epoxide	0.63	ug/l	1	-	-	Yes
Methoxychlor	0.15	ug/l	1	2.1	-	Yes
Toxaphene	ND	ug/l	1	-	-	Yes

	Project/Case Number:JC33572 Sampling Date:12/08-12/2016 Shipping Date:12/12/2016 EPA Region No.:2
REVIEW OF PESTICIDE ORG	SANIC PACKAGE
The following guidelines for evaluating volatile equired validation actions. This document will as udgment to make more informed decision and it users. The sample results were assessed accordiduction to the following order of precedence Haw-36A, Revision 0, June, 2015. SOM02.2. Pesticion data validation actions listed on the data reviewed according to the decimal of the data reviewed.	ssist the reviewer in using professional netter serving the needs of the data ing to USEPA data validation guidance lazardous Waste Support Section SOP No. the Data Validation. The QC criteria and
The hardcopied (laboratory name) _Accutesteviewed and the quality control and performance data summ	data package received has been parized. The data review for VOCs included:
No. of Samples:14	
X Data CompletenessX Holding TimesN/A GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate Overall Comments:TCL_pesticides_list_by_SW846-8	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
	ound not detected ated nondetect

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
1		
1		
1		
	1	
	7	

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	ACTION
	SAMPLED	EXTRACTED/ANALYZED	
Samples properly preserved. All samples extracted and analyzed within the required criteria.			

Note:

<u>Criteria</u>

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 5.6°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

All criteria were met	X
Criteria were not met see below	

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column? Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%? Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)? Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

All criteria were met	_X	_
Criteria were not met see below		

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All criteria were met	
Criteria were not met see below	

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note:

If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were met _	X
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	12/08/16
Dates of initial calibration verification:	12/08/16
Dates of continuing calibration:	12/16/16
Dates of final calibration	<u> </u>
Instrument ID numbers:	GC1G
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Contin	uing ca	libration	% differences meet the	performance criteri	nent performance criteria. a in at least one of the two no action taken, professional

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

All criteria were met _	Χ
Criteria were not met	
and/or see below	

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All criteria were met _	Χ_	
Criteria were not met		
and/or see below		

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamina	ation in the blar	nks below. High	n and low levels blanks	must be treated separately.
CRQL concentrat	ionN/A	١		
Laboratory blanks	5			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ug/L	400			it_of_0.01,_0.02,_and_0.25
				CONCENTRATION
ANALYZED	באטוט	MATRIX	OOMII OOND	UNITS
			pment_blanks_analyze r_job	d_with_this_data_package.

All criteria were met _	_X_	
Criteria were not met		
and/or see below	_	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
24	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥ CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup, Instrument, Field, TCLP/SPLP	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤ CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were met _	_X_	_
Criteria were not met		
and/or see below	_	

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
		 			
			1		

All criteria were metX_	_
Criteria were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueou	S				
Lab	Lab				
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b
JC33572-1	1G130588.D	75	531* c	65	73
JC33572-2	1G130589.D	120	91	42	38
JC33572-3	1G130590.D	78	77	39	39
JC33572-4	1G130591.D	84	73	52	60
JC33572-5	1G130592.D	75	57	39	37
JC33572-6	1G130593.D	92	91	19	19
JC33572-7	1G130594.D	81	74	91	94
JC33572-8	1G130595.D	66	62	61	64
JC33572-9	1G130596.D	64	64	76	83
JC33572-10	1G130597.D	59	59	58	63
JC33572-11	1G130598.D	78	77	45	49
JC33572-12	1G130599.D	72	60	73	70
OP99257-BS1	1G130585.D	75	73	46	48
OP99257-MB1	1G130583.D	72	71	68	69
OP99257-MB11	I 1G130584.D	63	66	46	57
OP99257-MS	1G130600.D	77	67	75	73
OP99257-MSD	1G130601.D	74	65	86	85
Surrogate Comp	pounds		Recove	ery Limit	ts
S1 = Tetrachlor	o-m-xvlene		26-132	%	
S2 = Decachlor			10-118		
(a) Recovery from (b) Recovery from (c) Recovery	_				

(c) Outside control limits due to matrix interference.

Note: Surrogate recoveries within laboratory control limits except for the cases described in this document. No action taken, professional judgment.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*			
Criteria	Detected Target	Non-detected Target		
	Compounds	Compounds		
%R > 150%	J+	No qualification		
30% < %R < 150%	No qua	alification		
10% < %R < 30%	J-	UJ		
%R < 10% (sample dilution not a factor)	J-	R		
%R < 10% (sample dilution is a factor)	Use profess	ional judgment		
RT out of RT window	Use profess	ional judgment		
RT within RT window	No qua	alification		

* Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID: ___JC33572-12MS/MSD____ Matrix/Level: __Groundwater___

The QC reported here applies to the following samples: Method: SW846 8081B JC33572-1, JC33572-2, JC33572-3, JC33572-4, JC33572-5, JC33572-6, JC33572-7, JC33572-8, JC33572-9, JC33572-10, JC33572-11, JC33572-12

JC33572-12	2 Spike	MS	MS	Spike	MSD	MSD	RPD	Limits
4,4'-DDT ND Methoxychlor ND								

⁽a) Outside the QC limits.

Note: MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits except for the cases described in this document.

Results for 4,4'-DDT and Methoxychlor qualified as estimated (J or UJ) in sample JC33572-12.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

^{* =} Outside of Control Limits.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

% R	QC LIMIT
ol_limits	
VI	

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met	
Criteria were not met	
and/or see belowN/A	

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package.

There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were met_	_N/A
Criteria were not met	
and/or see below	

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration?

 Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following quidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (≥ 5.0 ng/ μ L for SCPs and ≥ 125 ng/ μ L for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met	_X	
Criteria were not met		
and/or see below		

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action	
	Detected Associated Compounds	Non-detected Associated Compounds
% Moisture < 70.0		lo qualification
70.0 < % Moisture < 90.0	J	UJ
% Moisture > 90.0	J	R

	JES E
in the second	

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		95.43
		N = 2
		2 22 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

All criteria were met_	N/A
Criteria were not met	
and/or see below	

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs	•		Ma	itrix:	•
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			s data package. MS/N in the required criteria		
	<u> </u>				

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data: Results are valid; the data can be used for decision making purposes.

EXECUTIVE NARRATIVE

SDG No:

JC33572

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8015C

Number of Samples:

14

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Fourteen (14) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described the Data Review Worksheet.

Final calibration verification included in data packages.

Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected

samples.

2. sec-Butanol % recovery outside laboratory control limit in Blank Spike. No action taken,

professional judgment. % recovery within generally acceptable control limits.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Rafuel defaut

Signature:

Date:

January 24, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33572-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyi Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-3

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	_	υ	Yes

Sample ID: JC33572-4

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	UJ	Yes
Methanol	200	ug/l	1.0	-	් U	Yes

Sample ID: JC33572-5

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	•	U_	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	•	U	Yes

Sample ID: JC33572-6

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0		U	Yes
Isopropyl Alcohol	100	ug/l	1.0		U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-7

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0		U	Yes
n-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Butyl Alcohol	100	ug/l	1.0		U	Yes
sec-Butyl Alcohol	100	ug/l	1.0		UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-8

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	•	U	Yes
isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-9

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	υ	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0		UJ	Yes
Methanol	200	ug/l	1.0		U	Yes

Sample ID: JC33572-10

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016

Matrix: AQ - Field Blank Water

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	Ü	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	•	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	•	U	Yes

Sample ID: JC33572-11

Sample location: BMSMC Building 5 Area

Sampling date: 12/9/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-12

Sample location: BMSMC Building 5 Area

Sampling date: 12/12/2012 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	υ	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33572-126MS

Sample location: BMSMC Building 5 Area

Sampling date: 12/12/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	4810	ug/l	1.0	-	-	Yes
Isobutyl Alcohol	5120	ug/l	1.0	-	-	Yes
Isopropyl Alcohol	4370	ug/l	1.0	-	-	Yes
n-Propyl Alcohol	5110	ug/l	1.0	-	-	Yes
n-Butyl Alcohol	5230	ug/l	1.0	-	•	Yes
sec-Butyl Alcohol	6060	ug/l	1.0	-	o de	Yes
Methanol	4960	ug/l	1.0	-	•	Yes

Sample ID: JC33572-12MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12/12/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5250	ug/l	1.0	-	-	Yes
Isobutyl Alcohol	5350	ug/l	1.0	-	-	Yes
Isopropyl Alcohol	5680	ug/l	1.0	-	2	Yes
n-Propyl Alcohol	5110	ug/l	1.0	•	<u></u>	Yes
n-Butyl Alcohol	5020	ug/l	1.0	-	-	Yes
sec-Butyl Alcohol	5300	ug/l	1.0	-		Yes
Methanol	5660	⊂ug/l	1.0	-	-	Yes

	Project Number:JC33572
	Date:12/08-12/2016
	Shipping Date: 12/12/2016
	EPA Region: 2
REVIEW OF VOLATILE OR The following guidelines for evaluating volatile organics were of document will assist the reviewer in using professional judgm serving the needs of the data users. The sample results we guidance documents in the following order of precedence Physical/Chemical Methods SW-846 (Final Update III, December utilized. The QC criteria and data validation actions listed or guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest and the quality control and performance data summarized. The	GANIC PACKAGE created to delineate required validation actions. This nent to make more informed decision and in better assessed according to USEPA data validation ce: "Test Methods for Evaluating Solid Waste, ber 1996)," specifically for Methods 8000/8015C are in the data review worksheets are from the primary data package received has been reviewed
Lab. Project/SDG No.:JC33572 No. of Samples:14	Sample matrix:Groundwater
Trip blank No.: Field blank No.:JC33572-3;_JC33572-10 Equipment blank No.:JC33572-6 Field duplicate No.:	
X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesX_ Matrix Spike/Matrix Spike Duplicate	XLaboratory Control SpikesXField DuplicatesXCalibrationsXCompound IdentificationsXCompound QuantitationXQuantitation Limits
Overall Comments:_Low_molecular_weight_alcohols	_by_SW-846_8015C
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Date: January 24, 2017	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-		·
	<u> </u>	
<u> </u>		3
	2 20	
		1

All criteria were met _X_	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All samples analyz	ed within the recomn	nended method holding.	All sam	ples properly preserved.
				30 - 11 1
			1	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 5.6°C

<u>Actions</u>

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

If mass calibration is in error, all associated data are rejected.

All criteria were metN/A Criteria were not met see below
GC/MS TUNING
The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits
N/A_ The BFB performance results were reviewed and found to be within the specified criteria.
N/A_ BFB tuning was performed for every 12 hours of sample analysis.
If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.
List the samples affected:

All criteria were me	t
Criteria were not me	et
and/or see below _	_X

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	10/10/16
Dates of continuing calibration:	10/10/16;_12/16/16
Dates of final calibration verification:_	12/16/16
Instrument ID number:	GCGH
Matrix/Level: Aqueou	us/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
12/16/16	CC5519-5000	-29.3/-21.7	2-butanol	JC33572-1 to -12; -
		-24.7/-28.2	2-butanol	12MS/-12MSD

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described in this document. Final calibration verification included in data packages. Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected samples.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of > 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met	<u></u>
Criteria were not met	
and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	UNI'	NCENTRATION TS
All_method			fic_criteria		
Field/Equipmen					
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CON UNIT	CENTRATION S
_blanks_analyz	ed_with_this_da	ata_package	ageNo_target_analyte		
				5.0	

All criteria were met_	X
Criteria were not met	
and/or see below	-

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					-
				-	
	4				
1					
-				1	-

All criteria were met	_X
Criteria were not met	
and/or see below	-

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID		S	URROGATE	COMPOUND		ACTION
	Hexar	nol D E	SFM	TOL-d8	BFB	
	S1 a	S1b				
JC33572-1	91	93				
JC33572-2	103	94				
JC33572-3	98	93				
JC33572-4	100	93				
JC33572-5	106	99				
JC33572-6	103	105				
JC33572-7	109	93				
JC33572-8	112	96				
JC33572-9	95	86				
JC33572-10	109	93				
JC33572-11	91	81				
JC33572-12	97	82				
GGH5590-BS	92	101				
GGH5590-MB1	80	84				
GGH5590-MB2	79	82				
GGH5590-MB3	77	78				
JC33572-12MS	86	88				
JC33572-12MSD	75	74				
(a) Recovery from GC	signal #2		(b) Recove	erv from GC sia	nal #1	

⁽a) Recovery from GC signal #2

Note: All surrogate recoveries within laboratory control limits.

QC Limits* (Aqueous)				
LL_to_UL	_56_to_145_	to	to	to
QC Limits* (Solid-Low)				
LL_to_UL	to	to	to	to
QC Limits* (Solid-Med)				
LL_to_UL	to	to	to	to
1,2-DCA = 1,2-Dichloro	methane-d4		TOL-d8 =	Toluene-d8
DBFM = Dibromofluoroi	methane		BFB = Bro	mofluorobenzene

⁽b) Recovery from GC signal #1

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10% recovery.

All criteria were met _	X
Criteria were not met	
and/or see below	_

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC	33572-12MS/-12MS)	_%	Matrix/Level:	Groundwater/low	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		
						_
Note:						

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All criteria were met _X_	
Criteria were not met	
and/or see below	

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

ACTION	% RSD		MS CONC.	SAMPLE	COMPOUND
Notion	70 NOD	WOD COIVO.	MG 00110.	CONC.	OCIVII OCIVID
2000					
		- 1		monument engine	
				-	
_					

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	_X	
Criteria were not met		
and/or see below		

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID

COMPOUND

% R

QC LIMIT

Note: No action taken, professional judgment. % recovery within generally acceptable control limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see belowN/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No laboratory	/field dup	licates analyzed wit	th this data package. MS	S/MSD %	% recoveries RPD used
to assess	precision	n. RPD within labora	itory, generally acceptal	ole and g	guidance document
			ce criteria control limits.		

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	N/A
Criteria were not met	
and/or see below	_

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
					- 4
				THE REAL PROPERTY.	
J .					
		E E			
- 5					

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	_X	
Criteria were not met		
and/or see below	200	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC33572-12MS

Methanol

$$[] = (72990)/(10.64)$$

All criteria were met _	X_	
Criteria were not met		
and/or see helow		

XII.	OUA	ANTIT	ATION	LIMITS
All:	wu,	714111	\neg	LIMILIO

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		10
Ne.		

В.	Percen	Solid	S
----	--------	-------	---

List samples v	vhich I	nave <u><</u> 5	0 % solic	is				
								.0
						N. Section	1	
					Name of the last	-		
	107		Grand Co.					
THE REAL PROPERTY.								

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

MEMORANDUM

TO: Mr. Haley Royer

Anderson, Mulholland and Associates

DATE: January 24, 2017

FROM: R. Infante

FILE: JC33572

RE:

Data Validation SDG: IC33572

SUMMARY

Full validation was performed on the data for two groundwater samples analyzed for dissolved methane by method RSK-175. The samples were collected at the Bristol Myer Squib-Building 5 Area, Humacao, PR site on December 08, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC33572. The sample results were assessed according to USEPA general data validation guidance documents.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
A-1R4	JC33572-2	12/08/16	Groundwater	Methane
S-34	JC33572-4	12/08/16	Groundwater	Methane

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- Agreement of analysis conducted with chain of custody (COC) form
- Holding time and sample preservation
- Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- Internal standard performance and retention times
- Field duplicate results
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

Initial and Continuing Calibrations

Initial and continuing calibrations meet method specific requirements. Initial calibration retention times meet method specific requirements.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks.

No trip/field/equipment blank analyzed with this data package.

Laboratory/Field Duplicate Results

Field duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of \pm 25 % for analytes 5 x SQL.

LCS/LCSD Results

LCS (blank spike) was analyzed by the laboratory associated with this data package. Recoveries and RPD within laboratory control limits.

Quantitation Limits and Sample Results

Dilutions performed:

- sample JC33572-2 diluted 200 x
- sample JC33572-4 diluted 10 x

Calculations were spot checked.

Summary

Samples JC33572-2 and JC33572-4 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document.

Rafael Infante

Chemist License 1888

SAMPLE METHANE DATA SAMPLE SUMMARY

Sample ID: JC33572-2

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: Groundwater

METHOD: RSK -175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Methane 10700 ug/l 200 - - Yes

Sample ID: JC33572-4

Sample location: BMSMC Building 5 Area

Sampling date: 8-Dec-16

Matrix: Groundwater

METHOD: RSK-175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Methane 874 ug/l 10 - - Yes

MEMORANDUM

TO: Mr. Haley Royer

Anderson, Mulholland and Associates

DATE: January 25, 2017

FROM: R. Infante

FILE: JC33572

RE:

Data Validation

BMSMC, Building 5 Area

4th Q 2016

Accutest Job Numbers: JC33572

SUMMARY

Full validation was performed on the data for two groundwater samples analyzed selected inorganics (iron - ferric and ferrous; nitate-nitrogen; nitrite-nitrogen; nitrate + nitrite - nitrogen; sulfate and sulfide). The methods employed are listed in Table 1. The samples were collected at the BMSMC, Building 5 Area, Humaco, PR site on December 8, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC33572.

Table 1.

ANALYTE	METHOD	ANALYTE	METHOD
lron, ferric⁴	SM3500FE B-11	Iron, ferrous ^b	SM3500FE B-11
Nitrogen, nitrate ^c	EPA353.2/SM4500NO2B	Nitrogen, nitrate +	EPA352.2/LACHAT
		nitrite	
Nitrogen, nitrite	SM4500NO2 B-11	Sulfate	EPA 300/SW846-9056A
Sulfide	SM4500S2-F-11		

- (a) Calculated as: (Iron) (Iron, Ferrous)
- (b) Field analysis required. Received out of hold time and analyzed by request.
- (c) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite)

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Contract Laboratory program National Functional Guidelines for Inorganic data Review (OSWER 9240.1-45, EPA 540-R-04-004, October 2004- Final), (noted herein as the "primary guidance document"). Also, QC criteria from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update IV, December 1998)," and the QC requirements for the methods performed following the Standard Method guidelines are utilized. The guidelines were modified to accommodate the non-CLP methodology. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data are valid as reported and may be used for decision making purposes. The data results are acceptable for use; some of the results were qualified. Results for ferrous and ferric iron were qualified as estimated (J) in samples: JC33572-2 and -4.

SAMPLES

The samples included in the review are listed below

FIELD SAMPLE ID	LABORATORY ID	ANALYSIS
A-1R4	JC33572-2	See Table 1
S-34	JC33572-4	See Table 1

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- Surrogate spike recovery
- o Matrix spike/matrix spike duplicate (MS/MSD) results
- o Internal standard performance
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

The cooler temperatures were within the QC acceptance criteria of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$.

Sample preservation was acceptable.

Samples analyzed within method recommended holding time except for the following:

- JC33572-2 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.
- JC33572-4 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.

Note: Results for ferrous and ferric iron qualified as estimated ().

Initial and Continuing Calibrations

Initial and continuing calibration meets method performance criteria.

Method Blank/Equipment Blank/Field Blank

Target analytes were not detected in laboratory method blanks above the reporting limit.

No field/equipment blanks analyzed as part of this data package.

MS/MSD

1 55 4

Matrix spike was performed. Recoveries for MS/MSD were within laboratory control limits except for the cases described in this document; RPD for MS/MSD were within control limits.

• MS recovery for Nitrate + Nitrite Nitrogen in sample JC33514-2 outside laboratory control limits (119 %); control limits: 90 - 110 %. No action taken, MS recovery results apply to unspiked sample. Unspiked sample from another job.

Field/Laboratory Duplicate Results

Field/laboratory duplicate were analyzed as part of this data set. When no field/laboratory duplicates were analyzed, MS/MSD RPD was used to assess precision. RPD results were within laboratory/recommended control limits except for the following:

• JC33514-2/-2 DUP.: Nitrogen, nitrate + nitrite- 147.8 % RPD, outside laboratory control limit. No action taken. Low sample and duplicate concentration; < 5 x IDL.

LCS/LCSD Results

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Quantitation Limits and Sample Results

Dilutions were not required with this data set.

Calculations were spot checked.

Summary

The following samples JC33572-2 and JC33572-4 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. Some of the results were qualified, the results are valid.

Rafael Infante

Chemist License 1888

SAMPLE INORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33572-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/8/2016

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	12400	ug/l	1.0	-	•	Yes
Mn	SW846-6010C	598	ug/l	1.0	-	-	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	546	mg/l	1.0	-	-	Yes
Iron, ferric	SM3500FE B-11	11.4	mg/l	1.0	-	(I)	Yes
Iron, ferrous	SM3500FE B-11	0.21	mg/l	1.0	-	J	Yes √
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	0.21	mg/l	1.0	-	-	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	<0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-	U	Yes
Sulfate	EPA 300/SW846 9056A	< 10	mg/l	1.0	•	U	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0	-	U	Yes

Sample ID: JC33572-4

Sample location: BMSMC Building 5 Area
Sampling date: 12/8/2016

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	5550	ug/l	1.0		-	Yes
Mn	SW846-6010C	490	ug/l	1.0	100		Yes
Alkalinity, Total as CaCO3	SM2320 B-11	180	mg/l	1.0		-	Yes
Iron, ferric	SM3500FE B-11	< 0.20	mg/l	1.0		UJ	Yes√
Iron, ferrous	SM3500FE B-11	< 0.11	mg/l	1.0	-	(UJ)	Yes 🗸
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	< 0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	<0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-	U	Yes
Sulfate	EPA 300/SW846 9056A	< 10	mg/l	1.0		U	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0		U	Yes

Type of va	alidation	Full:X Limited: EPA Region:2	Date:	Number: 12/08-1 pped:1	2/2016		
	RE	VIEW OF INORGANI	C ANALYSI	S DATA PA	ACKAGE		
sulfide, ar assist the serving th validation Section S Laborator 45, EPA Program validation Methods informatio workshee	nd/or cyanide reviewer in use needs of the guidance doc PNO. HW-3ity program Na 540-R-04-004 (CLP) (SOP is criteria were con (if available ts are from the	es for evaluating mewere created to deline sing professional judge data users. The same uments in the following to Revision 0 (July 201 tional Functional Guide, October 2004- Final HW-2, Revision 13. Iderived from "Test Meiol Update IV, 1998)". The QC criteria and primary guidance doctored.	eate require ment to ma ple results vag order of 5) ISM02 (6) delines for I ld.). Validation Based on thods for Evaluation the project data valicument, unline	ed validation were assess precedence CP-MS Data norganic data of Metal ILM05.3 (Avaluating Set QAPP is dation actic ess otherw	n actions. formed de sed accorde: Hazard a Validatio ata Reviev I for the Cougust 200 olid Waste, reviewed ons listed ise noted.	This dod cision and ling to US ous Was n; USEP of (OSWE Contract 199). Qua Physical for projection the d	cument will ad in better SEPA data te Support A Contract P240.1: Laboratory lity controll/Chemical ata review
reviewed inorganic	and the qua	atory name) _Accute lity control and perf	est ormance d	data p ata summa	oackage ro arized. Th	eceived e data	has beer review for
No. of Sar Field blan Equipmen	mples:	JC335722 	-	Sample ma		_	vater
X(X(ICP Interferen			X L X F X L X I X S	ield Duplic aboratory (CP Serial Detection Li	ates Control S Dilution R mits Res	Samples esults sults
Overall Co	omments: _Fe	_and_Mn_(SW846-60)10C)				
Definition	of Qualifiers:						
U- Co R- Ro UJ- Es	stimated result ompound not d ejected data stimated non-d aboratory quali	detected letect					
Reviewer:	Rafa	el defaut _			Date:	01/25/20)17

				and/or see below
l.	DATA I	DELIVERABLES	;	
	A.	Data Package:		
MISSIN	IG INFO	RMATION	DATE LAB. CONTACTED	DATE RECEIVED
				- 10
				100 m
	В.	Other Discrepa	ncies:	
				1000
-				
V			<u> </u>	
200 WS 2 PH C				***

All criteria were met __X__ Criteria were not met

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of preparation, and subsequently from the time of preparation to the time of analysis.

Complete table for all samples and circle the analysis date for samples not within criteria

SAMPLE ID	DATE SAMPLED	CYANIDE DATE ANALYSIS	Hg DATE ANALYSIS	OTHERS DATE ANALYSIS	Hq	SULFIDE	ACTION
SAMPLES	DIGESTED AN	ID ANALYZE	D WITHIN T	HE METHO	D REC	OMMENDE	D HOLDING
						1	

Criteria

Metals - 180 days from time of collection. Mercury - 28 days from time of collection. Hexavalent Chromium (solids)- 30/7 from day of collection; 48 hrs aqueous samples Cyanide - 14 days from time of collection Sulfide - 14 days from time of collection pH measurements of aqueous samples upon receipt at the laboratory (criteria pH \leq 2 for metals; pH \geq 12 for cyanide)

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and rejects nondetects (R)
If pH > 2 for metals or pH < 12 for cyanide, positive results (J) and nondetects (UJ).
Cooler Temperature (Criteria: 4°C + 2°C): 5.6°C
If cooler temperature is > 10°C, flag non-detects as (UJ) and detects as (J).

All criteria were metN/A	
Criteria were not met	
and/or see below	_

ICP-MS TUNE ANALYSIS

Is the ICP-MS tuned prior to calibration?

Yes or No?

Does the % RSD exceeds 5% for any isotope in the tuning solution?

Yes or No?

Action:

NOTES: For ICP-MS tunes that do not meet the technical criteria, apply the action to all samples reported from the analytical run.

- 1. If the ICP-MS instrument was not tuned prior to calibration, the sample data should be qualified as unusable (R).
- 2. If the tuning solution was not analyzed or scanned at least 5x consecutively or the tuning solution does not contain the required analytes spanning the analytical range, the reviewer should use professional judgment to determine if the associated sample data should be qualified. The reviewer may need to obtain additional information from the laboratory. The situation should be recorded in the Data Review Narrative and noted for Contract Laboratory Program Project Officer (CLP PO) action.
- 3. If the resolution of the mass calibration is not within 0.1 u for any isotope in the tuning solution, qualify all analyte results that are ≥ Method Detection Limit (MDL) associated with that isotope as estimated (J), and all non-detects associated with that isotope as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.
- 4. If the %RSD exceeds 5% for any isotope in the tuning solution, qualify all sample results that are ≥ MDL associated with that tune as estimated (J), and all non-detects associated with that tune as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.

Table 2. ICP-MS Tune Actions for ICP-MS Analysis

ICP-MS Tune Results	Action for Samples
Tune not performed	Qualify all results as unusable (R)
Tune not performed properly	Use professional judgment
Resolution of mass calibration not within 0.1u	Qualify results that are ≥ MDL as estimated (J)
	Qualify non-detects as estimated (UJ)
% RSD > 5%	Qualify results that are ≥ MDL as estimated (J)
	Qualify non-detects as estimated (UJ)

Note: Analytes (As) analyzed by SW846-6010 – no tuning necessary.

All criteria were met	X
Criteria were not met	
and/or see below	_

INSTRUMENT CALIBRATION (SECTION 1)

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. Minimum of 2 calibration points for ICP-AES and ICP-MS; 5 points for Hg; and 4 points for cyanide. One initial calibration standard at the CRQL level for cyanide and Hg. If no, write in the non-compliance section of the data review narrative.

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration Verification standards (ICV or CCV).

Acceptance Criteria	ICV %R	CCV %R
Metals by 6010C/6020	100 + 10%	100 + 10%
Mercury/Metals by 7000s	100 + 10%	100 + 20%
Cyanide	100 + 15%	100 + 15%
Sulfide	100 + 15%	100 + 15%

DATE	ICV/CCV#	ANALYTE	%R	ACTION	SAMPLES AFFECTED
INITI	 AL AND CONTII	NUING CALIBRA	ATION N	LEET METHOD SPEC	IFIC CRITERIA

ACTIONS: If any analyte does not meet the %R criteria, follow the actions stated below. Qualify five samples on either side of the ICV/CCV out of control limit.

ICV	CCV
	111 – 125%
	111 – 135%
	116 – 130%
116 – 130%	116 – 130%
/UJ) if:	
75 – 89%	75 – 89%
75 – 89%	65 – 79%
70 – 84%	70 – 84%
70 – 84%	70 – 84%
•	
	<75%, >125%
<75%, >125%	<65%, >135%
<70%, >130%	<70%, >130%
<70%, >130%	<70%, >130%
	111 – 125% 111 – 125% 116 – 130% 116 – 130% /UJ) if: 75 – 89% 75 – 89% 70 – 84% 70 – 84% <75%, >125% <75%, >125% <70%, >130%

All criteria were metX
Criteria were not met
and/or see below

- III. INSTRUMENT CALIBRATIONS (SECTIONS 2 & 3)
- 2. Analytical Sequence

Did the laboratory use the proper number of standards for calibration as described in the method?

Yes or No

B. Were calibrations performed at the beginning of each analysis?

Yes or No

Were calibration verification standards analyzed at the beginning of sample analysis and the proper frequency according to the method?

Yes or No

D. Where the AA correlation coefficients (r) for the calibration curves
 ≥ 0.995? If r < 0.995, estimate positive results and nondetects (J/UJ).
 It is not necessary to qualify results if the laboratory used order regression.

Yes or No

Data quality may be affected if any of the above answer are "no". Use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the sample affected.

3. Other Check Standards

Laboratories may analyze an additional check standard after establishing the calibration curve. This standard may contain low level concentrations of target analytes and be analyzed and evaluated by the laboratory similar to a CLP "CRLD" standard (CRI for ICP, CRA for AA, and/or mid-range standard for CN and Sulfide). A 100 \pm 20% recovery acceptance limit should be used by the validator to evaluate the standard.

ACTIONS: If any analyte does not meet the %R criteria, follow the action needed below. Qualify 50% of either side of the CRI/CRA out of control limits.

% R		%R < 50%	%R	=	50-	%R	=	121-	%R	>	Affecte	d Ra	nge
			79%			150%	l		150%_				
Qualify Positiv	ve/N	ondetects Res	ults										
Metals 6010C/6020	by	R/R	J/UJ			J/A			R/A		<2x CR	d co	nc.
Hg/metals 7000s	by	R/R	J/UJ			J/A			R/A		<1.5x conc.		CRI
Cyanide		R/R	J/UJ			J/A			R/A		<1.5x conc.	mid	std.
Sulfide		R/R	J/UJ			J/A	158		R/A		<1.5x conc.	mid	std.

CRI is not required for Al, Ba, Ca, Fe, Mg, Na, and K.

NOTE: CRLD standard within laboratory and method specific criteria.

All criteria were met	N/A
Criteria were	not met
and/or see below	

Table 4. Calibration Actions for ICP-MS Analysis

Calibration Result	Action for Samples
Calibration not performed	Qualify all results as unusable (R)
Calibration incomplete	Use professional judgment
	Qualify results that are ≥ MDL as estimated
	(J)
	Qualify non-detects as estimated (UJ)
Not at least one calibration standard at or	Qualify results that are ≥ MDL but < 2x the
below the CRQL for each analyte	CRQL as estimated (J)
	Qualify non-detects as estimated (UJ)
Correlation coefficient < 0.995; %D outside	Qualify results that are ≥ MDL as estimated
±30%; y-intercept ≥ CRQL	(J)
	Qualify non-detects as estimated (UJ)
Correlation coefficient < 0.990	Qualify results that are ≥ MDL as estimated
	(J)
	Qualify non-detects as unusable (R)
ICV/CCV %R < 75%	Qualify results that are ≥ MDL as unusable
	(R)
A CONTRACTOR OF THE PROPERTY O	Qualify all non-detects as unusable (R)
ICV/CCV %R 75-89%	Qualify results that are ≥ MDL as estimated
	low (J-)
	Qualify non-detects as estimated (UJ)
ICV/CCV %R 111-125%	Qualify results that are ≥ MDL as estimated
	high (J+)
ICV/CCV %R > 125%	Qualify results that are ≥ MDL as estimated
	high (J+)
ICV/CCV %R > 160%	Qualify results that are ≥ MDL as unusable
	(R)

All criteria were met	X
Criteria were	not met
and/or see below	

IV. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including equipment, field, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in Sections 1 & 2 below. A separate worksheet page should be used for soil and water blanks.

Laboratory blanks			Matrix:A	queous		
DATE ANALYZED			ANALYTE	CONCENTRATION UNITS		
			_above_reporting_limits			
Field/Equipment			Matrix:Ad	queous		
DATE ANALYZED	EQUIPMENT BLANK	/FIELD	ANALYTE	CONCENTRATION UNITS		
No_field/equipn	nent_blank_an	• – –	. – – –	e		

Table. Field/Rinsate/Trip Blank Actions for ICP-MS Analysis

Blank Result	Sample Result	Action for Samples	
> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"	
	> CRQL but < Blank Result	Report at level of Blank Result with a "U"	
	> Blank Result but < 10x the Blank Result	Use professional judgment to qualify results as estimated (J)	

	•	All criteria were metX Criteria were not met and/or see below
IV.	BLANK ANALYSIS RESULTS (Section 3)	
Frequ	uency requirements	
at the	the preparation blank analyzed for each matrix, e frequency of the method? estimate positive results < 10x IDL for which preparation blank were than 20 samples/batch, qualification begins at the 21st sample.	Yes or No vas not analyzed.
B.	Was an ICB analyzed?	Yes or No
C.	Was a CCB analyzed at the frequency stated in the method?	Yes or No
deter and li	quality may be affected if any of the above answer is "no". Use mine the severity of the effect and qualify the data accordingly, ist the samples affected.	Discuss any actions below,
Com	E FOR SOIL SAMPLES pare raw sample value with blank results in ug/L unit, or rert blanks analyzed during a soil case to mg/Kg in order to con ts.	npare them with the sample
	c. In ug/L x [Volume diluted to (mL)]/[Weight digested] x 1L/1000/1000 = concentration in wet weight (mg/Kg)	mL x 1000g/1Kg x
Conc	centration, dry weight (mg/Kg) = (Wet weight concentration)/(% Se	olids) x 100
BI AN	NK ANALYSIS RESULTS (Sections 4.5)	

BLANK ANALYSIS RESULTS (Sections 4,5)

Laboratory blanks (PB, ICB/CCB) must first be used to qualify field and/or equipment blanks and

Any contamination remaining in the field or equipment blank will be used to qualify the associated samples.

					and/or see be	low
4.	Initial/C	Continuing Calit	oration Blanks (ICB/CC	CB) A	ctions	
Are all I	ICB/CCI	Bs less than the	e SQL?		Yes or No	
			either side of the ICB/C the ICB/CCB value.	СВо	ut of control limits.	
ICB/CC	B#	ANALYTE	CONC/UNITS	;	SAMPLES AFFECTED	_
						- - -
Are the	PB less	than the SQL	?	-	Yes or No	-
If yes, r	eject all	results (R) < 1	0x the PB value.			
РВ		ANALYTE	CONC/UNITS	:	SAMPLES AFFECTED	
				-		-
				-		_
BLANK	ANALY	SIS RESULTS	(Section 6)			
6.	Field/E	quipment Blant	k (FB/EB) Actions			
	Are the	FB/EB less th	an the SQL?		Yes or No	N/A
If no, w	as the F	B/EB value alr	eady rejected due to o	ther (QC criteria? Yes or No	
	eject (R) EB valu		s <_5x the FB/EB value	e. Rej	ect soil data with raw digest re	esults < 5x
PB		ANALYTE	CONC/UNITS	;	SAMPLES AFFECTED	_
				-		-
				-		_

All criteria were met __X__ Criteria were not met

All criteria were met __N/A___ Criteria were not met and/or see below ____

Table 5. Calibration/Preparation Blank Actions for ICP-MS Analysis - Summary

Blank Type	Blank Result	Sample Result	Action for Samples	
ICB/CCB	≥ MDL but ≤ CRQL	Non-detect	No action	
≥ MDL but ≤ CRQL		Report CRQL value with	a "U"	
> CRQL		Use professional judgme	ent	
ICB/CCB	> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"	
> CRQL but < Blank Res	sult	Report at level of Blank I	Result with a "U"	
> Blank Result		Use professional judgme	ent	
ICB/CCB	≤ (-MDL) but ≥ (-CRQL)	≥ MDL, or non-detect	Use professional judgment	
ICB/CCB	< (-CRQL)	< 10x the CRQL	Qualify results that are ≥ CRQL as estimated low (J-)	
			Qualify non-detects as estimated (UJ)	
Preparation Blank	> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"	
> CRQL but < 10x the B	lank Result	Qualify results as estimated high (J+)		
≥ 10x the Blank Result		No action		
Preparation Blank	≥ MDL but ≤ CRQL	Non-detect	No action	
≥ MDL but ≤ CRQL		Report CRQL value with a "U"		
> CRQL	S-1778	Use professional judgment		
Preparation Blank	< (-CRQL)	< 10x the CRQL	Qualify results that are ≥ CRQL as estimated low (J-)	
			Qualify non-detects as estimated (UJ)	

				Crite	ria were not met see below		
INDUCTIVELY CO	OUPLED PLAS	SMA (ICP) INTER	RFERENCE CHEC	CK SAMPLE			
The assessment interelement and t			ck sample (ICS)	is to verify	the laboratory's		
1. Recovery	Criteria						
List any elements %).	in the ICS AB	and ICS A soluti	ons which did not	meet the %R	criteria (80 – 120		
DATE E	LEMENT	%R ACTION	I SAMPLES	S AFFECTED			
_Interference_che	ck_sample_wi	thin_method_pe	rformance_criteria	<u> </u>			
ACTIONS:							
If an element does	s not meet the	%R criteria, follo	w the actions stat	ed below			
% R	%R < 50%	%R = 50-	%R = 121-	%R >			
Qualify Positive/N	andatasts Pas	79%	150%	150%			
Metals by 6010C/6020	R/R	J/UJ	J/A	R/A			
	y requirements				,		
Were interference (beginning of the a	•	•	ncy stated in the n		or No		
If no, <u>ACTIONS:</u> Estimate positive results (J) all samples for which Al, Ca, Fe, Mg > ICS value.							
The data may be affected. Use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the samples affected.							
				<u>.</u>			
		1000000			120		
	5 2-23						

All criteria were	e met	11	N/A
Cri	teria	were	not met
and/or	rsee	belov	V

Table 6. Interference Check Actions for ICP-MS Analysis - Summary

Interference Check Sample Results	Action for Samples
ICS not analyzed	Qualify detects and non-detects as unusable (R)
ICS not analyzed in proper sequence	Use professional judgment.
ICS %R>150%	Use professional judgment
ICS %R > 120% (or greater than true value + 2x the CRQL)	Qualify results that are ≥ MDL as estimated high (J+)
ICS %R 80-12-%	No qualification
ICS %R 50-79% (or less than true value – 2x the CRQL)	Qualify results that are ≥ MDL as estimated low (J-)
	Qualify non-detects as estimated (UJ)
ICSAB %R < 50%	Qualify detects as estimated low (J-) and non- detects as unusable (R)
Potential false positives in field samples with interferents	Qualify results that are ≥ MDL as estimated high (J+)
Potential false negatives in field samples with interferents	Qualify results that are ≥ MDL but < 10x the (negative value) as estimated low (J-) Qualify non-detects as estimated (UJ)

	C	were metX Criteria were not met for see below
VI. MATRIX SPIKE (MS)		
Sample # _JC33424-1MS/-1MSD	Matrix:Groundwater	Units:ug/L

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. Note that for Region 2, MS not required for: Ca, Mg, K, and Na for aqueous matrix.

Al, Ca, Fe, Mg, K, Na, for soil matrix

MS Recovery Criteria. List the percent recoveries for analytes which did not meet the %R criteria (75 – 125%); (85 – 115 % FOR Cr (VI)).

ANALYTE	SPIKE SAMPLE	SAMPLE	SPIKE	% R	ACTION				
	RESULT (SSR)								
	MS/MSD recoveries and RPD within laboratory control limits.								
					5				
					010.0008				

ACTIONS: Matrix spike actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

If the sample results \geq 4x the spike concentration, no action is taken. If any analyte does not meet the %R criteria, follow the actions stated below.

Table 9. Spike Sample Actions for ICP-MS Analysis

Spike Sample Results	Action for Samples
Matrix Spike %R < 30% Post-digestion spike %R < 75%	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)
Matrix Spike %R < 30% Post-digestion spike %R ≥ 75%	Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)
Matrix Spike %R 30-74% Post-digestion Spike %R < 75%	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as estimated (UJ)
Matrix Spike %R 30-74% Post-digestion spike %R ≥ 75%	Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)
Matrix Spike %R > 125% Post-digestion spike %R > 125%	Qualify affected results that are ≥ MDL as estimated high (J+)
Matrix Spike %R > 125% Post-digestion spike %R ≤ 125%	Qualify affected results that are ≥ MDL as estimated (J)

Spike Sample Results	Action for Samples
Matrix Spike %R < 30% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)
Matrix Spike %R 30-74% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated low (J-) and non-detects as estimated (UJ)
Matrix Spike %R > 125% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated high (J+) Non-detects are not qualified

2. Frequency Criteria

A. Was a matrix spike prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for which analyte was not spiked. If more than 20 samples/batch, qualification begins at the 21st sample.

B. Was a field blank used as spiked sample? Yes or No
If yes, estimate positive results (J) < 4x spike level added for the analyte.

A separate worksheet page should be used for each matrix spike

		ria were metN/A Criteria were not met and/or see below
VII. FIELD DUPLICATES		
Sample #:	Matrix:	Units:_ug/L

Field duplicate samples may be taken and analyzed as an indication of overall precision. Field duplicate analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measure only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

List the concentrations and RPDs in the field duplicate pair. RPD criteria: \pm 20% for aqueous; \pm 35% for soil. For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in ug/L and calculate RPD or difference for each analyte.

ANALYTE	SQL ug/L	SQL ug/Kg	SAMPLE RESULTS	DUPLICATE RESULTS	RPD	ACTION	
Al							
Sb	1						
As	No field/laboratory duplicates analyzed with data set. MS/MSD % recoveries RPD used to assess precision. RPD within laboratory and generally acceptable control limits						
Ва							
Be							
Cd							
Ca							
Cr							
Со	1						
Cu							
Fe							
Pb	Í						
Mg							
Mn							
Hg							
Ni							
K							
Se							
Ag							
Na							
TI							
V							
Zn							
Cyanide							
Cr(VI)							
· ·							

Field duplicate actions should be applied to only the sample and its duplicate.

All criteria were met	N/A	
Criteria were	not	met
and/or see belo	w	

Actions: Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are nondetects, the RPD is not calculated (NC), no action is needed.

Table 8. Duplicate Sample Actions for ICP-MS Analysis

Duplicate Sample Results	Action for Samples
Aqueous: Both original sample and duplicate sample > 5x the CRQL and 20% < RPD < 100%	Qualify those results that are ≥ CRQL as estimated (J)
Aqueous: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 100%	Qualify those results that are ≥ CRQL as unusable (R)
Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and 35% < RPD < 120%	Qualify those results that are ≥ CRQL as estimated (J)
Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 120%	Qualify those results that are ≥ CRQL as unusable (R)
Original sample or duplicate sample ≤ 5x the CRQL (including non-detects) and absolute difference between sample and duplicate > CRQL	Qualify those results that are ≥ MDL as estimated (J) and non-detects as estimated (UJ)

A separate worksheet page should be used for each laboratory duplicate analysis

			All criteria were metX Criteria were not met and/or see below
VIII.	LABORATORY DUPLICATES ((Section 1)	
measur greater duplicat	e of laboratory performance. It	t is also expected that so	ency and precision. They are a bil duplicate results will have a ed with collecting identical field
i. Dille	rence Criteria		
for soil)		olids for the sample and i	ria (± 20% for aqueous; ± 35% ts duplicate differ by more than e for each analyte.
Sample	#	Matrix:	Units:

ANALYTE	SQL ug/L	SQL mg/Kg	SAMPLE RESULTS	DUPLICATE RESULTS	RPD	ACTION
Al						
Sb						
As						,
Ba						
Ве						
Cd						
Ca						
Cr						
Со						
Сш						
Fe						
Pb						
Mg						
Mn						
Hg						
Ni						
K						
Se						
Ag						
Na						
TI						
V						
Zn						
Cr(VI)						
Sulfide						
Cyanide						

Note:

Laboratory duplicates actions should be applied to all other samples of the same matrix type. This qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

All criteria were met __N/A___ Criteria were not met and/or see below ____

Actions: Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are non-detects, the RPD is not calculated (NC), no action is needed.

Table 8. Field Duplicate Sample Actions for ICP-MS Analysis

Sample Type	Field Duplicate Result	Action for Samples
Aqueous	Sample and its field duplicate ≥ 5x the CRQL and RPD > 20%	Qualify sample and its duplicate as estimated (J)
	Sample and/or its field duplicate < 5x the CRQL and absolute difference > the CRQL	Qualify results > the MDL as estimated (J) Qualify non-detects as estimated (UJ)
Soil/Sediment	Sample and its field duplicate ≥ 5x the CRQL and RPD > 50%	Qualify sample and its duplicate as estimated (J)
	Sample and/or its field duplicate < 5x the CRQL and absolute difference > 2x the CRQL	Qualify results > the MDL as estimated (J)
	. 26. 12.60	Qualify non-detects as estimated (UJ)

2. Frequency Criteria

A. Was a laboratory duplicate prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for the analyte which duplicate was not performed. If more than 20 samples/batch, qualification begins at the 21st sample.

B. Was a field blank used for laboratory duplicate analysis? Yes or No

If yes, estimate positive results (J) for the analyte if field blank was used for duplicate analysis.

All criteria were metX
Criteria were not met
and/or see below

IX. LABORATORY CONTROL SAMPLE (LCS/LCSD)

The assessment of the LCSs is to determine both intralaboratory contamination and matrix specific precision and accuracy. Note that for Region 2, LCS is not required for aqueous Hg and Cyanide.

LCS Recoveries Criteria

A. <u>Aqueous LCS</u>/Solid LCS

List any LCS recoveries not within %R criteria (80 – 120%) and the samples affected.

DATE	ELEMENT	% R	ACTION	SAMPLES AFFECTED
_Recoveries_wi	thin_laboratory_control_	limits		
				700 - U
504 G		FreeErn Till	K-1118	
- 1.0.000 alby set				- A-T-W-F

ACTIONS: If analyte does not meet the %R criteria, follow the actions stated below.

Table 7. LCS Actions for ICP-MS Analysis

LCS Result	Action for Samples
%R 40-69%	Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as estimated (UJ)
%R > 130%	Qualify results that are ≥ MDL as estimated high (J+)
%R 70-130%	No qualification
%R < 40%	Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as unusable (R)
%R > 150%	Qualify detects as unusable (R); non- detects no qualification

All criteria were metX
Criteria were not met
and/or see below

2. Frequency Criteria

A. Was a laboratory control sample prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for the analyte if LCS was not performed.

If more than 20 samples/batch, qualification begins at the 21st sample.

Co Cu Fe Pb Mg Mn Hg Ni K Se Ag Na TI V

							Criteria	re metX a were not met e below
X.	ICP SEF	RIAL DIL	UTION AN	NALYSIS (Se	ction 1)			
	sessment ı a 5x dilu		CP serial	dilution analy	rsis is to deter	mine the	e precision of	the laboratory
1.	Percent	Differenc	ce (%D) C	riteria:				
	s analysi							r the diluted ncentrations <
	Serial	dilutions	were	not perfo	rmed for	the fo	llowing targ	jet analytes:
for anal				rmed, but and L before dilut		did not	agree within 1	10% difference
List the	%Ds for	analytes	which did	I not meet the	%D criteria (10%/100	0%)	
Sample	#_JC3	3148-1			Matrix:Gro	oundwate	er U	nits:_ug/L
ANALY	TE	IDL	50x IDL	SAMPLE RESULTS	SERIAL DILUTION	%D	ACTION	
Al								
Sb								
As								
Ва								
Be								
Cd								
Ca								
Cr								

Note:	Serial dilution within method performance criteria.

All criteria were metX	
Criteria were not me	ţ
and/or see below	

ACTIONS: Actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. Qualify only samples with raw results > 50x MDL.

Flag results with an (E) for elements exhibiting %D > 10%. Estimate (J) positive results > 50x MDL for elements that exhibited %D > 10 but < 100.

Reject (R) positive results > 50x MDL for elements which exhibited %D $\geq 100\%$.

SERIAL DILUTION ANALYSIS (Section 2)

2. Frequency Criteria

A. Was a serial dilution analysis prepared as required by the method? Yes or No

If no, estimate positive results ≥ 50x MDL (J) for the analyte which serial dilution analysis was not performed.

B. Was a field blank used for serial dilution analysis?

Yes or No

If yes, estimate positive results \geq 50x MDL (J) for the analyte if field blank was used for serial dilution analysis.

Table 10. Serial Dilution Actions for ICP-MS Analysis

Serial Dilution Result	Action for Samples		
Aqueous: Sample concentration > 50x MDL and 10% < %D < 100%	Qualify affected results whose raw data are > MDL as estimated (J)		
Aqueous: Sample concentration > 50x MDL and %D ≥ 100%	Qualify affected results whose raw data are > MDL as unusable (R)		
Soil/Sediment: Sample concentration > 50x MDL and 15% < %D < 120%	Qualify affected results whose raw data are > MDL as estimated (J)		
Soil/Sediment: Sample concentration > 50x MDL and %D ≥ 120%	Qualify affected results whose raw data are > MDL as unusable (R)		
Interferences present	Use professional judgment		

A separate worksheet page should be used for each serial dilution analysis.

		Criteria were not met d/or see below			
XI.	ICP-MS INTERNAL STANDARDS				
	Are internal standard added to the sample?	Yes_or No?			
	Are the proper number of internal standard added to the sample?	Yes or No?			
	Is the % Relative Intensities for all internal standards in a sample is within 60-125% of the response in the calibration blank? Yes or No?				
	Note:_ICP-OES_internal_standards_used;_relative_intensities_withi _document_performance_criteria	in_the_guidance_			

Action:

NOTE: Apply the action to the affected analytes for each sample that does not meet the internal standard criteria.

- 1. If no internal standards were analyzed with the run, the sample data should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP Project Officer (CLP PO) action.
- 2. If less than five of the required internal standards were analyzed with the run, or a target analyte(s) is (are) not associated to an internal standard, the sample data, or analyte data not associated to an internal standard should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP PO action.
- 3. If the % Relative Intensities for all internal standards in a sample is within 60-125% of the response in the calibration blank, the sample data should not be qualified.
- 4. If the %RI for an internal standard in a sample is not within the 60-125% limit, qualify the data for those analytes associated with the internal standard(s) outside the limit as follows:
 - a. If the sample was reanalyzed at a two-fold dilution with internal standard %RI within the limits, report the result of the diluted analysis without qualification. If the %RI of the diluted analysis was not within the 60-125% limit, report the results of the original undiluted analyses and qualify the data for all analytes that are ≥ Method Detection Limit (MDL) in the sample associated with the internal standard as estimated (UJ).
 - b. If the sample was not reanalyzed at a two-fold dilution, the reviewer should use professional judgment to determine the reliability of the data. The reviewer may determine that the results are estimated (J) or unusable (R).

Table 11. Internal Standard Actions for ICP-MS Analysis

Internal Standard Results	Action for Samples
No internal standards	Qualify all results as unusable (R)
< 5 of the required internal standards	Qualify all results as unusable (R)
Target analyte not associated with internal standard	Qualify all analyte results not associated with an internal standard as unusable (R)
% RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is between 60% and 125%	Do not qualify the data
% RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is outside the 60% to 125% limit	Qualify analytes associated with the failed internal standard that are ≥ MDL as estimated (J) and qualify associated non-detects as estimated (UJ)
Original sample not reanalyzed at 2-fold dilution	Use professional judgment Qualify sample results as estimated (J) or unusable ®

XII. DETECTION LIMITS RESULTS

The detection limit assessment is to verify that samples results are within instrument calibration range or linear range (ICP).

Instrument Detection Limits (IDL). Note IDL is not required for Cyanide.

- A. IDL/MDL (or lowest quantitation limit used) results were present and found to be allevels that meet the project objectives? Yes or No
- B. IDL/MDL (or lowest quantitation limit used) were not met for the following elements:
- 2. Reporting Requirements
- A. Were sample results on Form I (or equivalent) reported down to the IDL/MDL or lowest quantitation limit used for all analytes? Yes or No
- B. Were sample weights, volumes, and dilutions taken into account when reporting results (positive and nondetects)? Yes or No

If no, the reported results may be inaccurate. Request the laboratory resubmit the corrected data.

- 3. Sediment Sample Percent Solids (% solids):
- A. Were the % solids for any sediment samples < 50% but ≥ 10%? Yes or No If yes, estimate positive results and nondetects (J/UJ) if the % solids is 10-50%. List the affected samples:
- B. Were the % solids for any sediment samples < 10%? Yes or No If yes, reject all results (R) if the % solid is < 10%. List the affected samples: N/A
- XI. TOTAL/DISSOLVED OR INORGANIC/TOTAL ANALYTES
- A. Were any analyses performed for dissolved as well as total analytes on the same sample(s)? Yes or No
- B. Were any analyses performed for inorganic as well as total analytes on the same sample(s)? Yes or No

If yes, compare the differences between dissolved (or inorganic) and total analyte concentrations. Compute each difference as a percent of the total analyte only when both of the following conditions are fulfilled:

- (1) The dissolved (or inorganic) concentration is greater than total concentration, and
- (2) greater than or equal to 5xMDL.

All criteria were met	N/A
Criteria were	not met
and/or see below	<i>t</i>

- C. Is any dissolved (or inorganic) concentration greater than its total concentration by more than 20%?

 Yes or No
- D. Is any dissolved (or inorganic) concentration greater than its total concentration by more than 50%?

 Yes or **No**

ACTION:

If the percent difference is greater than 20%, flag (J) both dissolved/inorganic and total concentrations as estimated. If the difference is more than 50%, reject (R) both the values.

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results.

_X___ Sample results fall within the linear range for ICP and within the calibration range for all other parameters.

If samples results were beyond the linear range/calibration range of the instrument, were dilution performed?

List the affected samples/elements/dilution:

In the space below, please show a minimum of one sample calculation per method:

ICP/ICP-MS

Computer printout

Hg/Metals by AA

Hexavalent Chromium

Cyanide

Others

For soil samples, the following equation may be necessary to convert raw data values reported in ug/L to actual sample concentrations (mg/Kg):

Conc. in ug/L x Volume diluted to, mL x 1L x 1000 q x 1 mg = concentration

Weight digested, g 1000 mL 1 Kg 1000 mg in wet weight mg/Kg

In addition the sample results are converted to dry weight by using the percent solid calculations:

Wet weight concentration x 100 = final concentration, dry weight (mg/Kg) % solids

OVERALL ASSESSMENT

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the QC criteria previously discussed.
- 2. Write a brief Data Review Narrative to give the user an indication of the analytical limitations of the data. Note any discrepancies between the data and the Sample Delivery Group (SDG) Narrative for Contract Laboratory Program Project Officer (CLP PO) action. If sufficient information on the intended use and required quality of the data is available, the reviewer should include an assessment of the data usability within the given context.
- 3. If any discrepancies are found, the laboratory may be contacted by the Region's designated representative to obtain additional information for resolution. If a discrepancy remains unresolved, the reviewer may determine that qualification of the data is warranted.

				
	11474			
			-3859	
1000000				